Study of the Thermal Pyrolysis of Packaging Materials by Derivatographic Methods

Article Preview

Abstract:

This study aims to determine the key thermal parameters of plastic waste degradation, specifically polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS), using differential scanning calorimetry (DSC), differential thermogravimetry (DTG), and thermogravimetric (TG) analysis. The thermal stability of these materials was evaluated by analyzing residual solid and wax quantities, conversion percentages, liquid and gas product yields, and process duration. Experiments were conducted at 550–600°C with a heating rate of 50°C/min. Key thermal parameters investigated include onset decomposition temperature, temperature at 50% conversion, completion temperature, maximum DTG temperature, peak DTG value, melting point, and pyrolysis temperature. The activation energy for mass loss was calculated, ranging from 35 to 68 kcal/mol, with PS exhibiting the highest thermal stability (68 kcal/mol). The degradation conversion efficiency ranged from 85% to 99%. Notably, PET pyrolysis produced significantly more solid residues (0.136–0.150 g/g₀) than PP and PS (0.006–0.088 g/g₀). These findings provide valuable insights into the thermal behavior of plastic waste, supporting advancements in waste management and energy recovery applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-60

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Roychand, R., Farook, U., Said, Z., Leo, B. F., Low, I. M., & Saberian, M. (2025). Waste plastic pyrolysis: A review on regulations, circular economy, advanced recycling, life cycle assessment, environmental impacts, and techno-economic analysis. Environmental Advances, 14, 100499

Google Scholar

[2] Chanda, M. (2021). Chemical aspects of polymer recycling. Advances in Industrial and Engineering Polymer Research, 4, 1–18. https://www.keaipublishing.com/aiepr

Google Scholar

[3] Mammadov, Sh. M., Mammadov, A. Kh., Khankishiyeva, R. F., Mammadov, C. Sh., Salehov, A. Kh., Mammadova, G. A., & Azizova, A. S. (2023). The influence of irradiation temperature on crosslinking behavior and molecular structure of isoprene nitrile elastomer. Journal of Radiation Research, 10(2), 75–84. https://jradres.az/storage/871/Vol-10%2C--2%2C-2023%2C-pp.75-84.pdf

DOI: 10.13189/ujc.2015.030201

Google Scholar

[4] Yansaneh, I. S., & Zein, S. H. S. (2022). Recent trends in the thermal pyrolysis of plastic waste: A review. Processes, 10(2), 332

DOI: 10.3390/pr10020332

Google Scholar

[5] Alhulaybi, M. A., & Dubdub, I. (2023). Kinetic study of PET thermal pyrolysis using thermogravimetric analysis. Polymers, 15(14), 3010

DOI: 10.3390/polym15143010

Google Scholar

[6] Gao, X., Zhang, Y., Li, Q., & Wang, J. (2023). Pyrolysis kinetics and thermodynamics of PET nonwovens by TGA/FTIR/GC-MS. Journal of Analytical and Applied Pyrolysis, 170, 105889. https://pubmed.ncbi.nlm.nih.gov/377633577

Google Scholar

[7] Nurudeen, M., Adewale, O., & Bello, T. (2024). Thermal degradation kinetics of PET via TGA. International Research Journal of Pure and Applied Chemistry, 24(3), 1–12. https://journalirjpac.com/index.php/IRJPAC/article/view/845

Google Scholar

[8] Riadh, M. (2025). Perspectives on plastic pyrolysis for fuel oil production: Key factors and challenges. Sustainable Energy & Environment. SAGE Journals. https://doi.org/10.1177/0734242×241310658

Google Scholar

[9] Holland, B. J., & Hay, J. N. (2002). The thermal degradation of PET and analogous polyesters was measured by thermal analysis and FTIR spectroscopy. Polymer, 43, 1835–1847.

DOI: 10.1016/s0032-3861(01)00775-3

Google Scholar

[10] Abdullah, N. A., Novianti, A., Hakim, L. I., Putra, N., & Koestoer, R. A. (2018). Influence of temperature on conversion of PS waste to liquid oil by pyrolysis. IOP Conference Series: Earth and Environmental Science, 105, 012033

DOI: 10.1088/1755-1315/105/1/012033

Google Scholar

[11] Gurbanov, M. A., Mirzazada, E. V., Guliyeva, U. A., & Alyev, S. M. (2023). Formation of gas products during γ-radiolysis of plastic wastes. Journal of Radiation Research, 102, 30–35. https://jradres.az/storage/872/Vol-10,--2,-2023,-pp.30-35.pdf

Google Scholar

[12] Mirzazada, E. V., Valimatova, N. I., Guliyeva, U. A., & Gurbanov, M. A. (2023). Study of the pyrolysis process of plastic waste by the derivatographic method. Journal of Young Researchers, 3, 30–37

DOI: 10.59849/2409-4838.2023.3.30

Google Scholar

[13] Gurbanov, M. A., Gasimov, R. J., Bayramov, M. A., Guliyeva, U. A., & Mirzazada, E. V. (2025). Study of γ-irradiated polyethylene terephthalate polymer by the EPR method. Problems of Atomic Science and Technology, 156

DOI: 10.46813/2025-156-039

Google Scholar

[14] Gurbanov, M. A., Gasimov, R. J., Mirzazada, V., & Guliyeva, U. A. (2023). Study of the radiation effect on PET by the EPR method. Journal of Radiation Studies, 102, 57–64. https://jradres.az/storage/869/Vol-10,--2,-2023,-pp.57-64.pdf

Google Scholar

[15] Miloloza, M., Kučić Grgić, D., Bolanta, T., Ukis, M., Cvetnić, M., Ocelić Bulatović, V., & Kalic, H. (2021). Ecotoxicological assessment of microplastics in freshwater sources: A review. Water, 13, 56

DOI: 10.3390/w13010056

Google Scholar

[16] Yoda, H., & Kato, T. (2024). Thermal degradation of polyethylene terephthalate under nitrogen and air atmospheres: A comparative study. Polymer Degradation and Stability, 185, 109417

Google Scholar

[17] Gao, X., Zhang, Y., & Li, Q. (2023). Comparative study of thermal degradation of PET under nitrogen and air atmospheres. Journal of Thermal Analysis and Calorimetry, 151(1), 123–130

Google Scholar

[18] Kaneko, T., Gao, Z., Amasaki, I., & Nakada, M. (2023). The thermal degradation kinetics of polypropylene: Part III. Polymer Degradation and Stability, 80(2), 193–199

DOI: 10.1016/S0141-3910(02)00408-1

Google Scholar

[19] Gonzalez-Gutierrez, J., et al. (2011). Thermal and mechanical characterization of polystyrene processed by extrusion. Materials & Design, 32(4), 1681–1687.

Google Scholar

[20] Ahmad, I., et al. (2015). Pyrolysis and combustion kinetics of polystyrene using thermogravimetric analysis. Journal of Analytical and Applied Pyrolysis, 113, 431–438.

Google Scholar

[21] Aliyev, N. Sh., Guliyev, M. M., Bayramov, M. N., Ismayilova, R. S., & Nabiyeva, A. N. (2024). Temperature dependence of electrical conductivity during the heating–cooling cycle of gamma-irradiated high-density polyethylene. Journal of Radiation Research, 11(2), 53–58. https://jradres.az/storage/931/JRR-Vol.11%2C-No.2%2C-2024-53-58.pdf

Google Scholar

[22] Loginov, S. V., Pravdin, N. N., & Udalov, Y. P. (2017). Chemical technology of inorganic binders (p.27–28). SPbGTI (TU).

Google Scholar

[23] Ghulam Ali, J. N. (2022). Kinetics and thermodynamics of the pyrolysis of waste polystyrene over natural clay. Advanced Environmental Engineering Research, 3(4)

DOI: 10.21926/aeer.2204044

Google Scholar

[24] Şenocak, A., Alkan, C., & Karadağ, A. (2016). Thermal decomposition and a kinetic study of poly(para-substituted styrene)s. American Journal of Analytical Chemistry, 7, 246–253.

DOI: 10.4236/ajac.2016.73021

Google Scholar

[25] Xia, L., Zuo, L., Wang, X., Lu, D., & Guan, R. (2014). Non-isothermal kinetics of thermal degradation of the DGEBA/TU-DETA epoxy system. Journal of Adhesion Science and Technology, 28, 1792–1807.

DOI: 10.1080/01694243.2014.922454

Google Scholar

[26] Singh, K. K. K., & Singh, S. P. (2013). Kinetic model & analysis for pyrolysis of waste polystyrene over laumontite. International Journal of Engineering Research, 2

Google Scholar

[27] Sørum, L., Grønli, M. G., & Hustad, J. E. (2001). Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel, 80, 1217–1227.

DOI: 10.1016/s0016-2361(00)00218-0

Google Scholar

[28] Gurbanov, M. A., Guliyeva, U. A., & Mirzazada, E. V. (2025). Study of solid residues obtained from the pyrolysis of commercial plastic waste bottles by FTIR and TG methods. European Journal of Chemistry, 16(2), 201–206

DOI: 10.5155/eurjchem.16.2.201-206.2655

Google Scholar

[29] Campo, E. A. (2008). Polymeric materials and properties. In Selection of Polymeric Materials (p.139). William Andrew Publishing

DOI: 10.1016/B978-081551551-7.50003-6

Google Scholar

[30] Bhanderi, K. K., Joshi, J. R., & Patel, J. V. (2023). Recycling of PET plastics—an alternative to obtain value-added products: A review. Journal of the Indian Chemical Society, 100(1), 100843

DOI: 10.1016/j.jics.2022.100843

Google Scholar

[31] Grigoryeva, L. S. (2017). Physico-chemical methods for the analysis of building materials (36 p.). Moscow, Russia. http://lib.mgsu.ru/Scripts/irbis64r_91/ cgiirbis_64.exe?C21COM=F&I21DBN=IBIS&P21DBN=IBIS

Google Scholar

[32] Gijsman, P., & Fiorio, R. (2023). Long-term thermo-oxidative degradation and stabilization of polypropylene (PP) and the implications for its recyclability. Polymer Degradation and Stability, 208, 110260

DOI: 10.1016/j.polymdegradstab.2023.110260

Google Scholar

[33] The Good Plastic Company. (2024, November 25). COP-29. https://thegoodplasticcompany.com/2024/11/25/cop29/

Google Scholar

[34] State Statistical Committee of the Republic of Azerbaijan. (2024). Waste statistics 2024. https://www.stat.gov.az/news/index.php?id=6262&lang=en

Google Scholar

[35] World Bank. (2024, November 21). Building convergence on climate and plastics action. https://www.worldbank.org/en/events/2024/11/21/building-convergence-on-climate-and-plastics-action

Google Scholar

[36] International Solid Waste Association (ISWA). (2024). ISWA at COP-29: Declaration on waste management and climate change mitigation. https://www.iswa.org/blog/iswa-at-cop-iswas-cop29-declaration-on-waste-management-and-climate-change-mitigation/

DOI: 10.1016/0734-242x(91)90106-h

Google Scholar