[1]
Roychand, R., Farook, U., Said, Z., Leo, B. F., Low, I. M., & Saberian, M. (2025). Waste plastic pyrolysis: A review on regulations, circular economy, advanced recycling, life cycle assessment, environmental impacts, and techno-economic analysis. Environmental Advances, 14, 100499
Google Scholar
[2]
Chanda, M. (2021). Chemical aspects of polymer recycling. Advances in Industrial and Engineering Polymer Research, 4, 1–18. https://www.keaipublishing.com/aiepr
Google Scholar
[3]
Mammadov, Sh. M., Mammadov, A. Kh., Khankishiyeva, R. F., Mammadov, C. Sh., Salehov, A. Kh., Mammadova, G. A., & Azizova, A. S. (2023). The influence of irradiation temperature on crosslinking behavior and molecular structure of isoprene nitrile elastomer. Journal of Radiation Research, 10(2), 75–84. https://jradres.az/storage/871/Vol-10%2C--2%2C-2023%2C-pp.75-84.pdf
DOI: 10.13189/ujc.2015.030201
Google Scholar
[4]
Yansaneh, I. S., & Zein, S. H. S. (2022). Recent trends in the thermal pyrolysis of plastic waste: A review. Processes, 10(2), 332
DOI: 10.3390/pr10020332
Google Scholar
[5]
Alhulaybi, M. A., & Dubdub, I. (2023). Kinetic study of PET thermal pyrolysis using thermogravimetric analysis. Polymers, 15(14), 3010
DOI: 10.3390/polym15143010
Google Scholar
[6]
Gao, X., Zhang, Y., Li, Q., & Wang, J. (2023). Pyrolysis kinetics and thermodynamics of PET nonwovens by TGA/FTIR/GC-MS. Journal of Analytical and Applied Pyrolysis, 170, 105889. https://pubmed.ncbi.nlm.nih.gov/377633577
Google Scholar
[7]
Nurudeen, M., Adewale, O., & Bello, T. (2024). Thermal degradation kinetics of PET via TGA. International Research Journal of Pure and Applied Chemistry, 24(3), 1–12. https://journalirjpac.com/index.php/IRJPAC/article/view/845
Google Scholar
[8]
Riadh, M. (2025). Perspectives on plastic pyrolysis for fuel oil production: Key factors and challenges. Sustainable Energy & Environment. SAGE Journals. https://doi.org/10.1177/0734242×241310658
Google Scholar
[9]
Holland, B. J., & Hay, J. N. (2002). The thermal degradation of PET and analogous polyesters was measured by thermal analysis and FTIR spectroscopy. Polymer, 43, 1835–1847.
DOI: 10.1016/s0032-3861(01)00775-3
Google Scholar
[10]
Abdullah, N. A., Novianti, A., Hakim, L. I., Putra, N., & Koestoer, R. A. (2018). Influence of temperature on conversion of PS waste to liquid oil by pyrolysis. IOP Conference Series: Earth and Environmental Science, 105, 012033
DOI: 10.1088/1755-1315/105/1/012033
Google Scholar
[11]
Gurbanov, M. A., Mirzazada, E. V., Guliyeva, U. A., & Alyev, S. M. (2023). Formation of gas products during γ-radiolysis of plastic wastes. Journal of Radiation Research, 102, 30–35. https://jradres.az/storage/872/Vol-10,--2,-2023,-pp.30-35.pdf
Google Scholar
[12]
Mirzazada, E. V., Valimatova, N. I., Guliyeva, U. A., & Gurbanov, M. A. (2023). Study of the pyrolysis process of plastic waste by the derivatographic method. Journal of Young Researchers, 3, 30–37
DOI: 10.59849/2409-4838.2023.3.30
Google Scholar
[13]
Gurbanov, M. A., Gasimov, R. J., Bayramov, M. A., Guliyeva, U. A., & Mirzazada, E. V. (2025). Study of γ-irradiated polyethylene terephthalate polymer by the EPR method. Problems of Atomic Science and Technology, 156
DOI: 10.46813/2025-156-039
Google Scholar
[14]
Gurbanov, M. A., Gasimov, R. J., Mirzazada, V., & Guliyeva, U. A. (2023). Study of the radiation effect on PET by the EPR method. Journal of Radiation Studies, 102, 57–64. https://jradres.az/storage/869/Vol-10,--2,-2023,-pp.57-64.pdf
Google Scholar
[15]
Miloloza, M., Kučić Grgić, D., Bolanta, T., Ukis, M., Cvetnić, M., Ocelić Bulatović, V., & Kalic, H. (2021). Ecotoxicological assessment of microplastics in freshwater sources: A review. Water, 13, 56
DOI: 10.3390/w13010056
Google Scholar
[16]
Yoda, H., & Kato, T. (2024). Thermal degradation of polyethylene terephthalate under nitrogen and air atmospheres: A comparative study. Polymer Degradation and Stability, 185, 109417
Google Scholar
[17]
Gao, X., Zhang, Y., & Li, Q. (2023). Comparative study of thermal degradation of PET under nitrogen and air atmospheres. Journal of Thermal Analysis and Calorimetry, 151(1), 123–130
Google Scholar
[18]
Kaneko, T., Gao, Z., Amasaki, I., & Nakada, M. (2023). The thermal degradation kinetics of polypropylene: Part III. Polymer Degradation and Stability, 80(2), 193–199
DOI: 10.1016/S0141-3910(02)00408-1
Google Scholar
[19]
Gonzalez-Gutierrez, J., et al. (2011). Thermal and mechanical characterization of polystyrene processed by extrusion. Materials & Design, 32(4), 1681–1687.
Google Scholar
[20]
Ahmad, I., et al. (2015). Pyrolysis and combustion kinetics of polystyrene using thermogravimetric analysis. Journal of Analytical and Applied Pyrolysis, 113, 431–438.
Google Scholar
[21]
Aliyev, N. Sh., Guliyev, M. M., Bayramov, M. N., Ismayilova, R. S., & Nabiyeva, A. N. (2024). Temperature dependence of electrical conductivity during the heating–cooling cycle of gamma-irradiated high-density polyethylene. Journal of Radiation Research, 11(2), 53–58. https://jradres.az/storage/931/JRR-Vol.11%2C-No.2%2C-2024-53-58.pdf
Google Scholar
[22]
Loginov, S. V., Pravdin, N. N., & Udalov, Y. P. (2017). Chemical technology of inorganic binders (p.27–28). SPbGTI (TU).
Google Scholar
[23]
Ghulam Ali, J. N. (2022). Kinetics and thermodynamics of the pyrolysis of waste polystyrene over natural clay. Advanced Environmental Engineering Research, 3(4)
DOI: 10.21926/aeer.2204044
Google Scholar
[24]
Şenocak, A., Alkan, C., & Karadağ, A. (2016). Thermal decomposition and a kinetic study of poly(para-substituted styrene)s. American Journal of Analytical Chemistry, 7, 246–253.
DOI: 10.4236/ajac.2016.73021
Google Scholar
[25]
Xia, L., Zuo, L., Wang, X., Lu, D., & Guan, R. (2014). Non-isothermal kinetics of thermal degradation of the DGEBA/TU-DETA epoxy system. Journal of Adhesion Science and Technology, 28, 1792–1807.
DOI: 10.1080/01694243.2014.922454
Google Scholar
[26]
Singh, K. K. K., & Singh, S. P. (2013). Kinetic model & analysis for pyrolysis of waste polystyrene over laumontite. International Journal of Engineering Research, 2
Google Scholar
[27]
Sørum, L., Grønli, M. G., & Hustad, J. E. (2001). Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel, 80, 1217–1227.
DOI: 10.1016/s0016-2361(00)00218-0
Google Scholar
[28]
Gurbanov, M. A., Guliyeva, U. A., & Mirzazada, E. V. (2025). Study of solid residues obtained from the pyrolysis of commercial plastic waste bottles by FTIR and TG methods. European Journal of Chemistry, 16(2), 201–206
DOI: 10.5155/eurjchem.16.2.201-206.2655
Google Scholar
[29]
Campo, E. A. (2008). Polymeric materials and properties. In Selection of Polymeric Materials (p.139). William Andrew Publishing
DOI: 10.1016/B978-081551551-7.50003-6
Google Scholar
[30]
Bhanderi, K. K., Joshi, J. R., & Patel, J. V. (2023). Recycling of PET plastics—an alternative to obtain value-added products: A review. Journal of the Indian Chemical Society, 100(1), 100843
DOI: 10.1016/j.jics.2022.100843
Google Scholar
[31]
Grigoryeva, L. S. (2017). Physico-chemical methods for the analysis of building materials (36 p.). Moscow, Russia. http://lib.mgsu.ru/Scripts/irbis64r_91/ cgiirbis_64.exe?C21COM=F&I21DBN=IBIS&P21DBN=IBIS
Google Scholar
[32]
Gijsman, P., & Fiorio, R. (2023). Long-term thermo-oxidative degradation and stabilization of polypropylene (PP) and the implications for its recyclability. Polymer Degradation and Stability, 208, 110260
DOI: 10.1016/j.polymdegradstab.2023.110260
Google Scholar
[33]
The Good Plastic Company. (2024, November 25). COP-29. https://thegoodplasticcompany.com/2024/11/25/cop29/
Google Scholar
[34]
State Statistical Committee of the Republic of Azerbaijan. (2024). Waste statistics 2024. https://www.stat.gov.az/news/index.php?id=6262&lang=en
Google Scholar
[35]
World Bank. (2024, November 21). Building convergence on climate and plastics action. https://www.worldbank.org/en/events/2024/11/21/building-convergence-on-climate-and-plastics-action
Google Scholar
[36]
International Solid Waste Association (ISWA). (2024). ISWA at COP-29: Declaration on waste management and climate change mitigation. https://www.iswa.org/blog/iswa-at-cop-iswas-cop29-declaration-on-waste-management-and-climate-change-mitigation/
DOI: 10.1016/0734-242x(91)90106-h
Google Scholar