Effect of Film Thickness on the Structural and Physical Properties of CdZnTe Thin Films

Article Preview

Abstract:

Different thickness of CdZnTe films were deposited onto glass substrates by RF magnetron sputtering from Cd0.9Zn0.1Te crystals target. Their structural characteristics were studied by X-ray diffraction (XRD). The XRD experiments showed that the films are polycrystalline and have a zinc-blende (cubic) structure. The crystallite size and micro-strain were calculated. It is observed that the crystallite size increases and micro-strain decreases with the film thickness. The optical measurements showed that the average transmittance of all the samples have is less than 50% in the visible range. The possible optical transition in these films is found to be allowed direct transition with energy gap increase from 1.53 to 1.75 eV. For the electrical properties, the sheet resistivity decreased from 2.582×108 to3.069×107 Ohm/sq when the thickness increased from 307 to 823 nm; while the carrier concentration seems to be less affected by the film thickness. This behaviour in electrical properties was explained by the crystallinity and the grain size evolution.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Pages:

2312-2316

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. L. Chu, S. S. Chu, C. Ferekides, and J. Britt, Films and junctions of cadmium zinc telluride, J. Appl. Phys. Vol. 71 (1992), p.5635.

DOI: 10.1063/1.350495

Google Scholar

[2] M. Singh, E. Mumcuoglu, IEEE Trans. Nucl. Sci. Vol. 45 (1998), p.1158.

Google Scholar

[3] R.B. James, R.C. Schiratio (Eds. ), SPIE Proc., vol. 3768, Denver Colorado (1999 July).

Google Scholar

[4] M.J.A. van Pamelen, C. Budtz– Jorgensen, Nucl. Instrum. Methods, Vol. 403 (1998), p.390.

Google Scholar

[5] T. L. Chu, S. S. Chu, C. Ferekides, and J. Britt, Films and junctions of cadmium zinc telluride, J. Appl. Phy., Vol. 71 (1992) , p.5623.

DOI: 10.1063/1.350495

Google Scholar

[6] K. Prasada Rao, O. Md. Hussain, K. T. R. Reddy, P. S. Reddy, S. Uthanna, B. S. Naidu and P. Jayarama Reddy, Structural and optical properties of Cd1−xZnxTe thin films, Journal of Alloys and Compounds, Vol. 218 (1995) , p.86.

DOI: 10.1016/0925-8388(94)01364-0

Google Scholar

[7] S. H. Lee, A. Gupta, S. Wang, Alvin D. Compaan, Brian E. McCandless, Sputtered Cd1-xZnxTe films for top junctions in tandem solar cells, Solar Energy Materials & Solar Cells, Vol. 86 (2005) , p.551.

DOI: 10.1016/j.solmat.2004.09.008

Google Scholar

[8] A. Arbaoui, A. Outzourhit, N. Achargui, H. Bellakhder, E.L. Ameziane, J.C. Bernede, Effect of the zinc composition on the formation of ternary alloy Cd1-xZnxTe thin films, Solar Energy Materials & Solar Cells, Vol. 90 (2006) , p.1364.

DOI: 10.1016/j.solmat.2005.10.001

Google Scholar

[9] P. Banerjee, R. Ganguly, B. Ghosh, Optical properties of Cd1-xZnxTe thin films fabricated through sputtering of compound semiconductors,Applied Surface Science, Vol. 256 (2009) , p.213.

DOI: 10.1016/j.apsusc.2009.07.112

Google Scholar

[10] M. Becerril, H. Silva-L´opez, and O. Zelaya-Angel, Band gap energy in Zn-rich Zn1−xCdxTe thin films grown by RF sputtering, REVISTA MEXICANA DE F´ISICA, Vol. 50 (2004) , p.588.

Google Scholar

[11] G. Li, W. Jie, Z. Gu, H. Hua, Growth of Cd1-xZnxTe crystals with different x values and their qualities comparison, Journal of Crystal Growth, Vol. 263 (2004) , p.332.

DOI: 10.1016/j.jcrysgro.2003.11.069

Google Scholar

[12] B. Li, J. Zhu, X. Zhang, J. Chu, Effect of annealing on near-stoichiometric and non-stoichiometric CdZnTe wafers, Journal of Crystal Growth, Vol. 181 (1997) 204-209.

DOI: 10.1016/s0022-0248(97)00226-1

Google Scholar

[13] P.C. Sarmah, A. Rahman, Indian J. Phys., Vol. 64 A(1990) , p.21.

Google Scholar

[14] H.P. Klug, L. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley&Sons, NewYork, 1974 (p.618–708, Chapter 9).

Google Scholar

[15] Williamson. G. K and Hall. W. H , X-ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall. Vol. I (1953) 22–31.

DOI: 10.1016/0001-6160(53)90006-6

Google Scholar

[16] S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, A. Subbarayan, K. Natarajan, Sol. Energy Mater. Sol. Cells, Vol. 82 (2004), p.187.

Google Scholar

[17] R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon, Journal of Physics E: Scientific Instruments, Vol. 16 (1983) 214-222.

Google Scholar

[18] J.I. Pankove, Optical Processes in Semiconductors, Dover, New York, 1971, p.44.

Google Scholar

[19] H. Kim, J.S. Horwitz, G. Kushto, A. Piqué, Z.H. Kafafi, C.M. Gilmore and D.B. Chrisey, J. Appl. Phys. Vol. 88 (2000) : 6021.

Google Scholar

[20] X.T. Hao, J. Ma, D.H. Zhang, T.L. Yang, H.L. Ma, Y.G. Yang, C.F. Cheng and J. Huang, Appl. Surf. Sci., Vol. 183 (2001), p.137–142.

Google Scholar

[21] M. Bouderbala, S. Hamzaoui, B. Amrani, Ali H. Reshak, M. Adnane, T. Sahraou, M. Zerdali, Physica B, Vol. 403 (2008), p.3326.

DOI: 10.1016/j.physb.2008.04.045

Google Scholar