Self-Organization Processes of Nanostructure Formation by Laser Radiation in Metal

Article Preview

Abstract:

The current state of knowledge about mechanisms of metal nano-particles (NP) formation processes induced by the interaction of high-energy laser beam with surface of the metallic lattices (Au, Ag, Cu) is presented. The review includes an evaluation of the contribution of self-organized effects into the processes of the metal nano-structurization depending on the laser mode, external factors and internal parameters of an active zone. It was noticed that intensive pulsed laser illumination enabled to stimulate nano-fragmentation at the fluencies near and above the melting threshold of the metal in different mediums The laser induced processes of metallic particles formation by ablation of the metal target with consequent NP sizes stabilization by precise temperature tuning in the active zone, local plasmon resonance in liquids, and microablation mechanism in metal films in the conditions of surface plasmon resonance (SPR) due to self-organization effects are considered. Comparative analysis of the laser nano-technologies in air, vacuum, rarefied gas and liquid environments showed the advantages of self-organization in NP generation processes based on the SPR effects and their perspectives.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-23

Citation:

Online since:

April 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. -C. Daniel and D. Astruc: Chem. Rev., 104, 293-346 (2004).

Google Scholar

[2] Z. Lin, R. A. Johnson, and L.V. Zhigilei: Phys. Rev. B 77, 214108 15 pages] (2008).

Google Scholar

[3] S. Link, C. Buda, B. Nikoobakht, and M. A. El-Sayed: J. Phys. Chem. B, 104, 6152-6163 (2000).

Google Scholar

[4] S. Mohanan: Advanced Materials, (02-02-2004).

Google Scholar

[5] M. A. Garcia, et al.: Particles 2008, Orlando, USA, (10-13 May 2008).

Google Scholar

[6] O. Sublemontier, et al.: Photons, Atoms and Molecules laboratory / LFP Bat 522 (URA CEA-CNRS 2453), CEA Saclay, 91191 Gif/Yvette cedex (France).

DOI: 10.3934/nhm.2010.5.603

Google Scholar

[7] G. Alekseev, V. Sysoev, Yu. Bulkin: International Symposium on Lasers and Applications in Science and Engineering (LASE), 22-27 January 2005 at the San Jose Convention Ctr. in San Jose, California USA). SPIE Paper Number: 5713A-53, с. 335-342 (2005).

Google Scholar

[8] G. Alekseev, S. Shilov, V. Lopota, A. Misyurov: Advantages and Prospect of Application of LaserLight Treatment Conformably to Motor-Car Industry -V Intern. Conf. Beam Technologies and Laser Application, 23-28 Sept, St. Petersburg, pp.37-38 (2006).

Google Scholar

[9] G. Alekseev, et al.: Welding International, vol. 14, № 3, с. 246-248 (2000).

Google Scholar

[10] J. Neddersen, G. Chumanov, and T. M. Cotton: Laser Ablation of Metals: A New Method for Preparing Applied Spectroscopy, Vol. 47, 1959-1954 (1993).

DOI: 10.1366/0003702934066460

Google Scholar

[11] P.V. Kamat, M. Flumiani, and G.V. Hartland: J. Phys. Chem. B, 102, 3123-3128 (1998).

Google Scholar

[12] G. B. Khomutov: Colloids Surf., 243-267 (2002).

Google Scholar

[13] F. Mafune, J. Johno, Y. Takeda, et al.: J. Phys. Chem. B. Vol. 105. P. 5114 (2001).

Google Scholar

[14] A. Takami, H. Kurita, and S. Koda: J. Phys. Chem. B, 103, 1226-1232 (1999).

Google Scholar

[15] A.V. Simakin, V.V. Voronov, G.A. Shafeev: Russian Academy of Sciences. A.M. Prokhorov General Physics Institute, Vol. 60 pp.83-107 (2004).

Google Scholar

[16] T. Castro, R. Reifenberg, E. Choi, R.P. Andres: Phys. Rev. B. Vol. 42. P. 8548 (1990).

Google Scholar

[17] P. G. Kuzmin, G. A. Shafeev, A. V. Simakin, and V. V. Voronov: ISSN 1541-308X, Physics of Wave Phenomena, 2008, Vol. 16, No. 4, pp.261-267. c _ Allerton Press, Inc., (2008).

DOI: 10.3103/s1541308x0804002x

Google Scholar

[18] M. Wautelet, J.P. Dauchot, M. Hecq: Mater. Sci. Eng. C. Vol. 23. p.187. (2003).

Google Scholar

[19] F Bozon-Verdyura, R. Brainer, V.V. Voronov, et al.: Kvantovaya Elektronika., v. 33, p.714 (2003).

Google Scholar

[20] L. Fedorenko, B. Snopok, M. Yusupov, O. Lytvyn, Yu. Burlachenko: Acta Physica Polonica A, v. 115, pp.953-955 (2009).

DOI: 10.12693/aphyspola.115.1075

Google Scholar

[21] R.M.A. Azzam, N.M. Bashara, Ellipsometry and polarized light, Mir, M, p.387. (1981).

Google Scholar

[22] V.M. Agranovich, D.L. Mills. Surface Polaritons. Nord Holland, Amsterdam, 585p. (1982).

Google Scholar

[23] А.М. Bonch-Bruevich, M.K. Kochengina, M.N. Libenson, V.S. Malkin, S.D. Prudkov, S.D. Trubaev: Bull. Russ. Acad. Sci., Physics, 46, p.1186 (1982).

Google Scholar

[24] V. P. Veiko, A. I. Kaidanov, H. A. Kovachki, et al.: (Conference Proceedings Paper) Vol: Laser Radiation Photophysics, Bodil Braren; Mikhail N. Libenson, Editors. 11, 1856 (1993).

DOI: 10.1117/12.147617

Google Scholar