Defect and Structure Engineering – Submicron Technology and Inverse Nanotechnology for Photo- and Ionizing Radiation Detectors

Article Preview

Abstract:

A review is given of what kind technological aspects were used for realizing the defect engineering in semiconductor layers or crystals. The possibilities to change the free carrier capture are presented. The effect of Fermi level pinning at the surface levels allow to avoid the influence of barriers on the photoconductivity as well as to increase a role of recombination in the inter-crystalline region. The isovalent doping or the creation of the clusters allows transforming the defect distribution in the crystal bulk. The detector structure using the high electric field can introduce the recombination in at the contacts therefore allow diminishing a role of carrier capture in the bulk of structure. The cluster generation allows to increase the capture rate in the definite volume by a proton irradiation. The experience of different technologies for Si, GaAs, PbS, CdSe are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-17

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Gettering and Defect Engineering in Semiconductor Technology XIII, Edited by: M. Kittler and H. Richter. Solid State Phenomena Vols. 156 – 158 (2009).

Google Scholar

[2] F. Hartmann et al (RD50 Collaboration): Nuclear Instruments and Methods in Physics Research A Vol. 617 (2010), p.543.

Google Scholar

[3] S. Karpinskas, A. Smilga, J. Vaitkus and J. Viščakas, in: Proc. Int. Conf. Physics and Chemistry of Semicond. Heterojunct. and layered structures, volume II, pp.355-362, Akademi Kiado, Budapest (1971).

Google Scholar

[4] A. Rose. Concepts in photoconductivity and allied problems. (Interscience Publishers, New York 1963).

Google Scholar

[5] J. Viščakas and J. Vaitkus. Lithuanian physics collection Vol. 5 (1965), p.123.

Google Scholar

[6] J. Viščakas, J. Vaitkus, A. Matulionis and A. Smilga, in: Digests of All-Union Workshop on II-VI semiconductors and their application, pp.104-105 Kiev, (1966).

Google Scholar

[7] J. Vaitkus, R. Jasinskaite, V. Kazlauskienė, J. Miškinis and A. Zindulis: Thin Solid Films, Vol 387/1-2 (2001), p.212.

Google Scholar

[8] J. Vaitkus, R. Tomašiūnas, J. Kutra, M. Petrauskas and A. Zindulis: J. Cryst. Growth, Vol. 101 (1990), p.826.

Google Scholar

[9] J. Vaitkus, V. Kazlauskiene, J. Miskinis and J. Sinius: Materials Res. Bull.: Vol. 33 (1998), p.711.

Google Scholar

[10] J. Vaitkus, R. Baubinas, V. Kazlauskienė, J. Miškinis, A. Mažeikis, E. Žąsinas and A. Žindulis: Microelectr.J. Vol. 30(4-5) (1999), p.335.

Google Scholar

[11] W.C. Omara, R.B. Herring and L.P. Hunt. Handbook of Semiconductor Silicon technology. Noyes Publ. (1990).

Google Scholar

[12] V. Amstibovskij, J. Vaitkus, E. Gaubas, A. Kaniava and A. Rudaitis: Lithuanian physics collection Vol. 28(5) (1988), p.644.

Google Scholar

[13] V. Amstibovskij, private communication.

Google Scholar

[14] J.A. Grigorjev, V.I. Biberin, V.B. Osvenskij, S.P. Grisina, J.J. Vaitkus, J.J. Storasta, A.V. Markov and O.L. Egorova. USSR A.C. No. 242614, priority from 10. 10. 85 (1986).

Google Scholar

[15] V. Kažukauskas, J. Storasta, and J. -V. Vaitkus: J. Appl. Phys. Vol. 89 (2001), p.557.

Google Scholar

[16] M. Huhtinen: Nuclear Instruments and Methods in Physics Research A Vol. 491 (2002), p.194–215.

Google Scholar

[17] E. Gaubas, T. Čeponis, A. Uleckas and J. Vaitkus: Nuclear Instruments and Methods in Physics Research A: Vol. 612(3) (2010), p.563.

DOI: 10.1016/j.nima.2009.08.024

Google Scholar

[18] J.L. Hastings, S.K. Estreicher and P.A. Fedders: Phys. Rev. B Vol. 56(16) (1997), p.10215.

Google Scholar

[19] G. Davies, S. Hayama, L. Murin, R. Krause-Rehberg, V. Bondarenko, A. Sengupta, C. DaVia, and A. Karpenko: Radiation damage in silicon exposed to high-energy protons. Physical Review B 73, 165-202 (2006).

DOI: 10.1103/physrevb.73.165202

Google Scholar

[20] M. Moll et al. (RD50 Collaboration): Nuclear Instruments and Methods in Physics Research A Vol. 546 (2005), p.99.

Google Scholar

[21] T. Čeponis, A. Balčytis, A. Dzimidavičius, E. Gaubas, J. Kusakovskij, and K. Žilinskas: Lith. J. Phys. Vol. 50(2) (2010), p.215.

DOI: 10.3952/lithjphys.50205

Google Scholar