CZTS Monograin Powders and Thin Films

Article Preview

Abstract:

This paper reviews results of studies on different materials and technologies for polycrystalline solar cells conducted at Tallinn University of Technology. Structural properties and defect structure of kesterite CZTS compounds (Cu2ZnSnSe4, Cu2ZnSn(SSe)4) were studied. Influence of selenization parameters of a Zn-Cu-Sn stacked layer on the CZTS layer growth and on the morphology, distribution of elements was analyzed. All the results obtained have been used to optimize the technology of producing solar cell structures in different designs. Cu2ZnSnSe4 and, Cu2ZnSn(SSe)4 based monograin layer solar cells were developed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-13

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.I. Hoffert et al, Nature, 395, (1998), p.981.

Google Scholar

[2] A. Goetzberger, C. Hebling, H. -W. Schock: Materials Science and Engineering R 40, (2003), pp.1-46.

Google Scholar

[3] A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley), (2006).

Google Scholar

[4] A. Feltrin, A. Freindlich: Renewable Energy 33 (2008), pp.180-185.

Google Scholar

[5] H. Araki, A. Mikaduki, et. al.: TSF, 517 (2008), p.1457–1460.

Google Scholar

[6] A. Weber, H. Krauth, a. o.: TSF 517 (2009), p.2524–2526.

Google Scholar

[7] M. Altosaar, J. Raudoja, et. al. , phys phys. stat. sol. (a) 205 (2008), pp.167-170.

Google Scholar

[8] N. Kamoun, H. Bouzouita, B. Rezig: TSF 515 (2007), pp.5949-5952.

Google Scholar

[9] T. Tanaka, D. Kawasaki , et. al.: phys. stat. sol. (c) 3 (2006), pp.2844-2847.

Google Scholar

[10] D. Mitzi, M. Y. Yuan, et. al.: Advanced materials, 20, (2008), pp.3657-3662.

Google Scholar

[11] R. A. Wibowo, W. S. Kim, et. al.: Journal of Phys. and Chem. of Sol., 68 (2007), 1908-(1913).

Google Scholar

[12] J. J. Scragg, P. J. Dale, L. M. Peter et. al.: Phys. Stat. Sol. (b), 245, (2008), p.1772 – 1778.

Google Scholar

[13] S. Chen, J. -H. Yang, et. al.: Physical Review B81, (2010) p.245204.

Google Scholar

[14] M. Altosaar, E. Mellikov: Jpn. J. Appl., Phys., 39, (2000), p.65 – 66.

Google Scholar

[15] M. Altosaar, D. Meissner, et. al.: Solar Energy Materials & Solar Cells, 93, 1 (2009), pp.65-69.

Google Scholar

[16] E. Mellikov, D. Altosaar, et. al.: Materials Challenges in Alternative & Renewable Energy: Ceramic Transactions, Volume 224, xx – xx, (2011).

Google Scholar

[17] O. Volobujeva, J. Raudoja, E. Mellikov, et. al. Journal of Phys. and Chem. of Solids, 93, (2009), pp.11-14.

Google Scholar

[18] M. Grossberg, J. Krustok, et. al.: (unpublished paper).

Google Scholar

[19] J.H. Werner, J. Mattheis and U. Rau: Thin Solid Films, 480-481 (2005), p.399.

Google Scholar

[20] J. Krustok, R. Josepson, T. Raadik, M. Danilson: Physica B 405 (2010), p.3186.

DOI: 10.1016/j.physb.2010.04.041

Google Scholar

[21] O. Volobujeva, E. Mellikov, et. al. ., in: Proceedings: Conference on Optoelectronic and Microelectronic Materials and Devices, IEEE Publishing, 257 – 260 (2009).

Google Scholar

[22] O. Volobujeva, E. Mellikov, et. al. Materials Challenges in Alternative & Renewable Energy: Ceramic Transactions, Volume 224, xx – xx, (2011).

Google Scholar

[23] M. Ganchev, L. Kaupmees, J. Iljina, et, al.: Energy Procedia, 2 1, 65-70, (2010).

Google Scholar