p.177
p.181
p.185
p.189
p.193
p.197
p.201
p.205
p.209
Modeling Shock Induced Plasticity in Copper Single Crystal: Numerical and Strain Localization Issues
Abstract:
Multiscale dislocation dynamics plasticity (MDDP) simulations are carried out to address the following issues in modeling shock-induced plasticity: 1- the effect of finite element (FE) boundary conditions on shock wave characteristics and wave-dislocation interaction, 2- the effect of the evolution of the dislocation microstructure on lattice rotation and strain localization. While uniaxial strain is achieved with high accuracy using confined boundary condition, periodic boundary condition yields a disturbed wave profile due the edge effect. Including lattice rotation in the analysis leads to higher dislocation density and more localized plastic strain.
Info:
Periodical:
Pages:
193-196
Citation:
Online since:
August 2011
Authors:
Keywords:
Price:
Сopyright:
© 2011 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: