Structural Characterization of Nano-Crystalline BaTiO3 Powder Prepared Using Hydrothermal Method

Article Preview

Abstract:

BaTiO3 powders were prepared hydrothermally using TiCl4, Ba(OH)2.8H2O and NH4OH as starting materials at 150°C for 2h. The structure of the prepared nanocystalline BT powders were a metastable cubic perovskite according to XRD and HRTEM analysis, while FT Raman spectra showed that BT powders have a tetragonal structure. Hydroxyl and carbonate groups were observed in all prepared powders that showed in FTIR spectroscopy as vibrational bands. The tetragonal phase of BT powder was identified clearly by slow scan XRD at 2θ between 44.6 to 46°. The crystallite size of BT powders have increased with the increase of annealing temperature from 19 nm at room temperature to 70 nm at 1000°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

205-208

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. H. Lee, H. H. Nersisyan, H. H. Lee and C. W. Won, J. Mater. Sci. 39 (2004) 1397.

Google Scholar

[2] M. Viviani, M. T. Buscaglia, A. Testino, V. Buscaglia, P. Bowen and P. Nanni, J. Eur. Ceram. Soc. 23 (2003) 1383.

Google Scholar

[3] S. K. Lee, T. J. Park, G. J. Choi, K. K. Koo and S. W. Kim, Mater. Chem. Phys. 82 (2003) 742.

Google Scholar

[4] I. MacLaren and C. B. Ponton, J. Eur. Ceram. Soc. 20 (2000) 1267.

Google Scholar

[5] S. K. Tripathy, T. Sahoo, M. Mohapatra, S. Anand and R. P. Das, Mater. Lett. 59 (2005) 3543.

Google Scholar

[6] Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen and G. Han, Mater. Lett. 63 (2009) 230.

Google Scholar

[7] S. W. Lu, B. I. Lee, Z. L. Wang and W. D. Samuels, J. Cryst. Grow. 219 (2000) 269.

Google Scholar

[8] D. Hennings, G. Rosenstein and H. Schreinemacher, J. Eur. Ceram. Soc. 8 (1991) 107.

Google Scholar

[9] M. Wu, R. Xu, S. H. Feng, L. Li, D. Chen and Y. J. Luo, J. Mater. Sci. 31 (1996) 6201.

Google Scholar

[10] C. T. Xia, E. W. Shi, W. E. Zhong and J. K. Guo, J. Eur. Ceram. Soc. 15 (1995) 1171.

Google Scholar

[11] J.O.E. Jr., C. C. Hung-Houston, B. L. Gersten, M. M. Lencka and R. E. Riman, J. Am. Ceram. Soc. 79(1996) 2929.

Google Scholar

[12] E. B. Slamovich and I. A. Aksay, J. Am. Ceram. Soc. 79 (1996) 239.

Google Scholar

[13] L. Zhao, A. T. Chien, F. F. Lapse and J.S. Speck, J. Mater. Res. 11 (1996) 1325.

Google Scholar

[14] T. Noma, S. Wada, M. Yano and T. Suzuki, J. Appl. Phys. 80 (1996) 5223.

Google Scholar

[15] B. D. Begg, E. R. Vance and J. Nowotny, J. Am. Ceram. Soc. 77 (1994) 3186.

Google Scholar

[16] S. Schlag and H. F. Eicke, Solid State Commun 91 (1994) 883.

Google Scholar

[17] K. Uchino, E. Sadanaga and T. Hirose, J. Am. Ceram. Soc. 72 (1989) 1555.

Google Scholar

[18] H. I. Hsiang and F. S. Yen, J. Am. Ceram. Soc. 79 (1996) 1053.

Google Scholar

[19] Y. M. Zeng, Y. Q. Shi and G. W. Chen, Phys. A 319 (2003) 80.

Google Scholar

[20] P. K. Dutta and J. R. Gregg, Chem. Mater. 4 (1992) 843.

Google Scholar

[21] W. S. Cho, J. Phys. Chem. Solid 59 (1998) 659.

Google Scholar

[22] I. J. Clark, T. Takeuchi, N. Ohtori and D. C. Sinclair, J.. Mater. Chem. 9 (1999) 83.

Google Scholar

[23] P. S. Dobal, A. Dixit and R. S. Katiyar, J. Appl. Phys. 89 (2001) 8085.

Google Scholar

[24] C. An, C. Liu, S. Wang, Y. Liu, Mater. Res. Bell. 43 (2008) 932.

Google Scholar

[25] C. Chen, Y. Wei, X. Jiao and D. Chen, Mater. Chem. Phys. 110 (2008) 186.

Google Scholar