Structural, Optical and Electrical Properties of ZnO Sprayed Thin Films Doped with Fluorine

Article Preview

Abstract:

F-doped ZnO films (FZO) of about 400 nm thicknesses were prepared on glass substrates by the chemical spray pyrolysis technique. X-ray diffraction patterns showed that the undoped and F-doped ZnO films exhibit the hexagonal wurtzite crystal structure with a preferential orientation along [002] direction. No secondary phase is observed in F-doped ZnO films. All films exhibit a transmittance around 80% in the visible range. Photoluminescence spectra at room temperature of undoped and F doped ZnO thin films are presented. The wide PL bands centered at 510 and 680 nm are characteristic of deep levels of oxygen vacancies in the ZnO matrix, and zinc interstitial position. The FZO films are degenerate and exhibit n-type electrical conductivity. The lowest electrical resistivity was 7.6 10−3 Ω cm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

253-256

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Singh, A. V., Mehra, R. M., Buthrath, N., Wakahara, A. and Yoshida, J. Appl. Phys. 90, (2001) 5661.

Google Scholar

[2] X.P. Peng, J.Z. Xu, H. Zang, B.Y. Wang, Z.G. Wang, J. Lumin. 128, (2008) 297.

Google Scholar

[3] J.B. Lee, H.J. Lee, S.H. Seo, J.S. Park, Thin Solid Films 641, (2001) 398.

Google Scholar

[4] N. Hongsith, E. Wongrat, T. Kerdcharoen and S.Choopun, Sensors and Actuators B: Chemical 144, (2010) 67.

DOI: 10.1016/j.snb.2009.10.037

Google Scholar

[5] T. Trupke, M.A. Green, and P. Würfel, J. Appl. Phys. 92, (2002) 1668.

Google Scholar

[6] I. Soumahoro, G. Schmerber, A. Douayar, S. Colis, M. Abd-Lefdil, N. Hassanain, A. Berrada, D. Muller, A. Slaoui, H. Rinnert, and A. Dinia, Journal of Applied Physics 109, (2011) 033708

DOI: 10.1063/1.3544307

Google Scholar

[7] D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, Appl. Phys. Lett. 73 (1998) 1038

Google Scholar

[8] H. Jianhua and R. Gordon, Solar Cells 30, (1991) 437.

Google Scholar

[9] H.S. Yoon, K.S. Lee, T.S. Lee, B. Cheong, D.K. Choi, D.H. Kim and W.M. Kim, Solar Energy Mater. and Solar Cells 92, (2008) 1366.

DOI: 10.1016/j.solmat.2008.05.010

Google Scholar

[10] S. Ilican, Y. Caglar, M. Caglar and F. Yakuphanoglu, Appl. Surf. Science 255, 2353 (2008).

Google Scholar

[11] J. Rodríguez-Báez, A. Maldonado, G. Torres-Delgado, R. Castanedo-Pérez and M. de la L. Olvera, Materials Letters 60, (2006) 1594.

DOI: 10.1016/j.matlet.2005.11.077

Google Scholar

[12] A. Douayar, R. Diaz, F. Cherkaoui El Moursli, G. Schmerber, A. Dinia, and M. Abd-Lefdil1, Eur. Phys. J. Appl. Phys. 53, (2011) 20501.

DOI: 10.1051/epjap/2010100364

Google Scholar

[13] I. Soumahoro, R. Moubah , G. Schmerber, S. Colis, M. Ait Aouaj, M. Abd-lefdil, N. Hassanain, A. Berrada, A. Dinia, Thin Solid Films 518, (2010) 4593.

DOI: 10.1016/j.tsf.2009.12.039

Google Scholar

[14] D. Behera and B. S. Acharya, J. Lumin. 128, (2008) 1577.

Google Scholar

[15] J. Petersen, C. Brimont, M. Gallart, O. Crégut, G. Schmerber, P. Gilliot, B. Hönerlage, C. Ulhaq-Bouillet, J. L. Rehspringer, C. Leuvrey, S. Colis, A. Slaoui, and A. Dinia, Microelectron. J. 40, (2009) 239.

DOI: 10.1016/j.mejo.2008.07.061

Google Scholar

[16] Y. Z. Tsai, N.F. Wang and C.L. Tsai, Thin Solid Films 518, (2010) 4955.

Google Scholar

[17] D. C. Altamirano-Juiarez, G. Torres-Delgado, S. Jimienez-Sandoval, O. Jimienez-Sandoval and R.Castanedo-Pierez, Solar Energy Materials & Solar Cells 82, (2004) 35.

Google Scholar

[18] B. Thangaraju,Thin Solid Films 402, (2002) 71.

Google Scholar

[19] M. Oshima and K. Yoshino, J. electronic Mater. 39, (2010) 819.

Google Scholar

[20] P. Scherrer, Gottinger Nachrichten Gesell. 2, (1918) 98.

Google Scholar