Side Gate Graphene and AlGaN/GaN Unipolar Nanoelectronic Devices

Article Preview

Abstract:

Three-terminal junction devices were realized in graphene grown heteroepitaxially on semiinsulating silicon carbide as well as in AlGaN/GaN heterostructures grown by MOCVD on sapphire containing a two dimensional electron gas. These nanoelectronic devices were fabricated using electron beam lithography. In both types of heterostructures room temperature electrical measurements revealed a pronounced nonlinear electrical behavior of the fabricated nanoelectronic devices. The obtained voltage rectification at room temperature demonstrates the feasibility of func-tional three-terminal junctions in heterostructures consisting of types of high carrier mobility struc-tures than classical III-V semiconductor heterostructures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

427-430

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] St. M. Goodnick and J. Bird: IEEE Trans. Nanotechnol. Vol. 2 (2003), p.268

Google Scholar

[2] I. Worschech, D. Hartmann, S. Reitzenstein and A. Forchel: J. Phys.: Condens. Mater. Vol. 17 (2005), p. R775

DOI: 10.1088/0953-8984/17/29/r01

Google Scholar

[3] M. Dragoman and D. Dragoman: Nanoelectronics Principles and Devices (Artech House, Boston 2006).

Google Scholar

[4] D. Goldhaber-Gordon, M.S. Montmerlo, J.C. Love, G.J. Opiteck and J.C. Ellenbogen: Proc. IEEE Vol. 85 (1997), p.521

DOI: 10.1109/5.573739

Google Scholar

[5] H. Xu: Nature Mater. Vol. 4 (2005), p.649

Google Scholar

[6] P.R. Bandaru, C. Daraio, S. Jin and A.M. Rao: Nature Mater. Vol. 4 (2005), p.663

Google Scholar

[7] C.R. Müller, L. Worschech, P. Höpfinger, S. Höfling and A. Forchel: IEEE Electron Device Lett. Vol. 28 (2007), p.859

Google Scholar

[8] H.Q. Xu, I. Shorubalko, D. Wallin, I. Maximov, P. Omling, L. Samuelson and W. Seifert: IEEE Electron Device Lett. Vol. 25 (2004), p.164

DOI: 10.1109/led.2004.824841

Google Scholar

[9] L. Bednarz, Rashimi, P. Simon, T. Gonzalez and J. Mateos: IEEE Transact. Nanotechnol. Vol. 5 (2006), p.750

Google Scholar

[10] A. Jacobson, I. Shorubalko, L. Maag, U. Sennhauser and K. Ensslin: Appl. Phys. Lett. Vol. 97 (2010), p.032110

Google Scholar

[11] H. Irie, Q. Diduck, M. Margala,R. Sobolewski and M.J. Feldman: Appl. Phys. Lett. Vol. 93 (2008), p.053502

Google Scholar

[12] D.B. Suyatin, J. Sun, A. Fuhrer, D. Wallin, L.E. Froberg, L.S. Karlson, I. Maximov, L.R. Wallenberg, L. Samuelson and H.Q. Xu: Nano. Lett. Vol. 8 (2008), p.1100

DOI: 10.1021/nl073193y

Google Scholar

[13] F. Meng, J. Sun, M. Graczyk, K. Zhang, M. Prunnila, J. Ahopelto, P. Shi, J. Chu, I. Maximov and H.Q. Xu: Appl. Phys. Lett. Vol. 97 (2010), p.242106

DOI: 10.1063/1.3526725

Google Scholar

[14] R. Göckeritz, D. Schmidt, M. Beleites, G. Seifert, S. Krischok, M. Himmerlich and J. Pezoldt: Mater. Sci. Forum Vol. 679-680 (2011), p.785

DOI: 10.4028/www.scientific.net/msf.679-680.785

Google Scholar

[15] J. Pezoldt, Ch. Hummel, A. Hanisch, I. Hotovy, M. Kadlecikova and F. Schwierz: Phys. Status Solidi C Vol. 2 (2010), p.390

DOI: 10.1002/pssc.200982440

Google Scholar

[16] K. Tonisch, W. Jatal, R. Granzner, M. Kittler, U. Baumann, F. Schwierz and J. Pezoldt: Mater. Sci. Forum Vol. 645-648 (2010), p.1219

DOI: 10.4028/www.scientific.net/msf.645-648.1219

Google Scholar

[17] H.Q. Xu: Appl.Phys. Lett. Vol. 78 (2001), p. (2064)

Google Scholar