Enhanced Electrochemical Properties of LiFePO4/C Cathode Material by Metal Oxide Coating

Abstract:

Article Preview

LiFePO4/C composite cathode material prepared by carbothermal reduction method was coated by metal oxide MnO2, Al2O3, CuO, respectively, by a chemical precipitation method. The effects of metal oxide coating on the structure and electrochemical performance of LiFePO4/C composites were systematically investigated. The structure and morphology of the samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the electrochemical properties were evaluated by constant-current charge/discharge cycling tests. It is found that the coating of metal oxide could greatly improve its high-rate dischargeability and cycling performance. The LiFePO4/C cathode material coated by MnO2 exhibits a specific discharge capacity of 118.5 mAh/g at 3C rate, much higher than the uncoated sample (95.1 mAh/g), with a capacity degradation rate of only 6.3 % after 250 cycles at 3C rate.

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Edited by:

Weiguo Pan, Jianxing Ren and Yongguang Li

Pages:

3443-3447

DOI:

10.4028/www.scientific.net/AMR.347-353.3443

Citation:

L. Wang et al., "Enhanced Electrochemical Properties of LiFePO4/C Cathode Material by Metal Oxide Coating", Advanced Materials Research, Vols. 347-353, pp. 3443-3447, 2012

Online since:

October 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.