Thermoelectric Properties of CoSb3 Nanoparticle Films

Article Preview

Abstract:

Cobblestone-like CoSb3 nanoparticle films have been achieved via a catalyst-free vapor transport growth technique. The thermoelectric properties of the nanoparticle films were measured from room temperature to around 500 oC. The resultant CoSb3 nanoparticle films show high electrical conductivities due to clean particle surfaces. A maximum power factor reaches 1.848×10−4 W/mK2 at 440 oC. The discussed approach is promising for realizing new types of highly efficient thermoelectric semiconductors.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

3448-3455

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.R. Sootsman, D. Y. Chung and M. G. Kanatzidis: Angew. Chem. Int. Ed., Vol. 48 (2009), p.8616.

Google Scholar

[2] N. Soheilnia, H. Xu, H. Q. Zhang, T. M. Tritt, I. Swainson and H. Kleinke: Chem. Mater., Vol. 19 (2007), p.4063.

Google Scholar

[3] K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzidis: Science, Vol. 303 (2004), p.818.

DOI: 10.1126/science.1092963

Google Scholar

[4] A. I. Hochbaum, R. K. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, A. Majumdar and P. D. Yang: Nature, Vol. 451 (2008), p.163.

DOI: 10.1038/nature06381

Google Scholar

[5] K. Ahn, C. P. Li, C. Uher and M. G. Kanatzidis: Chem. Mater., Vol. 21 (2009), p.1361.

Google Scholar

[6] A. I. Hochbaum, R. K. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, A. Majumdar and P. D. Yang: Nature, Vol. 451 (2008), p.163.

DOI: 10.1038/nature06381

Google Scholar

[7] M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke and H. Weller: Adv. Funct. Mater., Vol. 19 (2009), p.3476.

DOI: 10.1002/adfm.200901261

Google Scholar

[8] E. E. Abbott, J. W. Kolis, N. D. Lowhorn, W. Sams, A. Rao and T. M. Tritt: Appl. Phys. Lett., Vol. 88 (2006), p.262106.

DOI: 10.1063/1.2217190

Google Scholar

[9] W. Y. Zhao, P. Wei, Q. J. Zhang, C. L. Dong, L. S. Liu and X. F. Tang: J. Am. Chem. Soc., Vol. 131 (2009), p.3713.

Google Scholar

[10] E. S. Toberer, S. R. Brown, T. Ikeda, S. M. Kauzlarich and G. J. Snyder: Appl. Phys. Lett., Vol. 93 (2008), p.062110.

Google Scholar

[11] L. R. Sheppard, T. Bak and J. Nowotny: J. Phys. Chem. C, Vol. 112 (2008), p.611.

Google Scholar

[12] M. L. Liu, I. W. Chen, F. Q. Huang and L. D. Chen: Adv. Mater., Vol. 21 (2009), p.3808.

Google Scholar

[13] M. K. Han, K. Hoang, H. J. Kong, R. Pcionek, c. Uher, K. M. Paraskevopoulos, S. D. Mahanti and M. G. Kanatzidis: Chem. Mater., Vol. 20 (2008), p.3512.

Google Scholar

[14] C. L. Condron, S. M. Kauzlarich, T. Ikeda, G. J. Snyder, F. Haarmann and P. Jeglic: Inorg. Chem., Vol. 47 (2008), p.8204.

Google Scholar

[15] J. R. Sootsman, H. J. Kong, C. Uher, J. J. D'Angelo, C. I. Wu, T. P. Hogan, T. Caillat and M. G. Kanatzidis: Angew. Chem. Int. Ed., Vol. 47 (2008), p.8616.

DOI: 10.1002/anie.200803934

Google Scholar

[16] M. Zhou, J. F. Li and T. Kita: J. Am. Chem. Soc., Vol. 130 (2008), p.4527.

Google Scholar

[17] S. H. Yang, T. J. Zhu, T. Sun, J. He, S. N. Zhang and X. B. Zhao: Nanotechnology, Vol. 19 (2008), p.245707.

Google Scholar

[18] M. G. Kanatzidis: Chem. Mater., Vol. 22 (2010), p.648.

Google Scholar

[19] G. Joshi, H. Lee, Y. C. Lan, X. W. Wang, G. H. Zhu, D. Z. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S Dresselhaus, G. Chen and Z. F. Ren: Nano Lett., Vol. 8 (2008), p.4670.

DOI: 10.1021/nl8026795

Google Scholar

[20] S. K. Bux, R. G. Blair, P. K. Gogna, H. Lee, G. Chen, M. S. Dresselhaus, R. B. Kaner and J. P. Fleurial: Adv. Funct. Mater., Vol. 19 (2009), p.2445.

DOI: 10.1002/adfm.200900250

Google Scholar

[21] W. W. Zhou, J. X. Zhu, D. Li, H. H. Hng, F. Y. C. Boey, J. Ma, H. Zhang and Q. Y. Yan: Adv. Mater., Vol. 21 (2009), p.3196.

Google Scholar

[22] C. Feldmann and H. Goesmann: Angew. Chem. Int. Ed., Vol. 49 (2010), p.1362.

Google Scholar

[23] A. Khitun, A. Balandin, J. L. Liu and K. L. Wang: J. Appl. Phys., Vol. 88 (2002), p.696.

Google Scholar

[24] W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri and A. Majumdar: Phys. Rew. Lett., Vol. 96 (2006), p.045901.

DOI: 10.1103/physrevlett.96.045901

Google Scholar

[25] L. Yang, H. H. Hng, D. Li, Q. Y. Yan, J. Ma, T. J. Zhu, X. B. Zhao and H. Huang: J. Appl. Phys., Vol. 106 (2009), p.013705.

Google Scholar

[26] A. Purkayastha, S. Kim, D. D. Grandhi, P. G. Ganesan, T. Borca-Taciuc and G. Ramanath: Adv. Mater., Vol. 18 (2006), p.2958.

Google Scholar

[27] J. M. Zide, D. O. Klenov, S. Stemmer, A. C. Gossard, G. Zeng, J. E. Bowers, D. Vashaee and A. Shakouri: Appl. Phys. Lett., Vol. 87 (2005), p.112102.

DOI: 10.1063/1.2043241

Google Scholar

[28] G. J. Snyder and E. S. Toberer: Nat. Mater., Vol. 7 (2008), p.105.

Google Scholar

[29] W. S. Liu, B. P. Zhang, L. D. Zhao and J. F. Li: Chem. Mater., Vol. 20 (2008), p.7526.

Google Scholar

[30] H. Li, X. F. Tang, Q. J. Zhang and C. Uher: Appl. Phys. Lett., Vol. 93 (2008), p.252109.

Google Scholar

[31] Y. Z. Pei, L. D. Chen, W. Zhang, X. Shi, S. Q. Bai, X. Y. Zhao, Z. G. Mei and X. Y. Li: Appl. Phys. Lett., Vol. 89 (2006), p.221107.

Google Scholar

[32] T. He, J. Z. Chen, H. D. Rosenfeld and M. A. Subramanian: Chem. Mater., Vol. 18 (2006), p.759.

Google Scholar

[33] Y. Chu, X. F. Tang, W. Y. Zhao and Q. J. Zhang: Cryst. Growth Des., Vol. 8 (2008), p.208.

Google Scholar

[34] L. Yang, H. H. Hng, H. Cheng, T. Sun and J. Ma: Mater. Lett., Vol. 62 (2008), p.2483.

Google Scholar

[35] L. J. Chen, H. N. Hu, Y. X. Li, G. F. Chen, S. Y. Yu and G. H. Wu: Chem. Lett., Vol. 35 (2006), p.170.

Google Scholar

[36] M. S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. Muller, C. Gatti, Y. Zhang, M. Rowe and M. Muhammed: Adv. Funct. Mater., Vol. 14 (2004), p.1189.

DOI: 10.1002/adfm.200400109

Google Scholar

[37] J. L. Mi, X. B. Zhao, T. J. Zhu and J. P. Tu: App. Phys. Lett., Vol. 91 (2007), p.172116.

Google Scholar

[38] Y. Kawaharada, K. Kurosaki, M. Uno and S. Yamanaka: J. Alloys Compd., Vol. 315 (2001), p.193.

Google Scholar