Raman and Electrical Analysis of Iodine-Doped Amorphous Carbon Thin Films

Article Preview

Abstract:

Iodine doped amorphous carbon (a-C: I) thin films were prepared by using Thermal Chemical Vapor Deposition (CVD) with deposition temperature ranging from 5000C to 7000C. The physical and electrical properties of deposited a-C:I thin films were characterized by Raman spectroscope and Solar Simulator system. The presence of 2 peaks known as Raman D peaks and Raman G peaks ensure the amorphous structure of carbon (C). As deposition temperature increase, the ID/IG ratio shows difference value, which indicates the effects of the temperature towards the a-C: I structures. An ohmic graph was obtained for the IV measurement, and the conductivity varies from 10-4 to 101 Scm-1. The photoresponse was also determined for all samples. As a reference, an undoped a-C thin film was prepared to differentiate the characteristic between a-C and a-C: I.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

281-286

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. W. Chen and J. Robertson, Surface atomic properties of tetrahedral amorphous carbon, Diamond and Related Materials. 15 (2006) 936-938.

DOI: 10.1016/j.diamond.2005.10.054

Google Scholar

[2] V. Rigato, G. Maggioni, D. Boscarino, G. Mariotto, E. Bontempi, A. H. S. Jones, D. Camino, D. Teer, and C. Santini, Ion beam analysis and Raman characterisation of coatings deposited by cosputtering carbon and chromium in a closed field unbalanced magnetron sputter ion plating system, Surface and Coatings Technology. 116 (1999).

DOI: 10.1016/s0257-8972(99)00324-2

Google Scholar

[3] J. Besold, R. Thielsch, N. Matz, C. Frenzel, R. Born, and A. Mbius, Surface and bulk properties of electron beam evaporated carbon films, Thin Solid Films. 293 (1997) 96-102.

DOI: 10.1016/s0040-6090(96)09000-1

Google Scholar

[4] S. M. Mominuzzaman, M. Rusop, T. Soga, T. Jimbo, and M. Umeno, Nitrogen doping in camphoric carbon films and its application to photovoltaic cell, Solar Energy Materials and Solar Cells. 90 (2006) 3238-3243.

DOI: 10.1016/j.solmat.2006.06.037

Google Scholar

[5] N. D. Baydogan, Evaluation of optical properties of the amorphous carbon film on fused silica, Materials Science and Engineering B. 107 (2004) 70-77.

DOI: 10.1016/j.mseb.2003.10.013

Google Scholar

[6] O. S. Panwar, M. A. Khan, B. S. Satyanarayana, S. Kumar, and Ishpal, Properties of boron and phosphorous incorporated tetrahedral amorphous carbon films grown using filtered cathodic vacuum arc process Applied Surface Science. 256 (2010).

DOI: 10.1016/j.apsusc.2010.02.035

Google Scholar

[7] Bharat Bhushan, Nanotribology of ultrathin and hard amorphous carbon, Springer Handbook of Nanotechnology (2007) 1339-1378.

DOI: 10.1007/978-3-540-29857-1_42

Google Scholar

[8] Diane S. Knight and William B. White, Characterization of diamond films by Raman spectroscopy, Journal of Materials Research. 4 (1989) 385-393.

Google Scholar

[9] A. M. M. Omer, S. Adhikari, S. Adhikary, M. Rusop, H. Uchida, M. Umeno, and T. Soga, Iodine doping in amorphous carbon thin-films for optoelectronic devices, Physica B: Condensed Matter. 376 (2006) 316-319.

DOI: 10.1016/j.physb.2005.12.081

Google Scholar

[10] D. Pradhan and M. Sharon, Opto-electrical properties of amorphous carbon thin film deposited from natural precursor camphor, Applied Surface Science. 253(2007) 7004-7010.

DOI: 10.1016/j.apsusc.2007.02.030

Google Scholar

[11] S. Prawer, K. W. Nugent, Y. Lifshitz, G. D. Lempert, E. Grossman, J. Kulik, I. Avigal, and R. Kalish, Systematic variation of the Raman spectra of DLC films as a function of sp2: sp3 composition, Diamond and Related Materials. 5(1996) 433-438.

DOI: 10.1016/0925-9635(95)00363-0

Google Scholar

[12] S. A. Mohd Zobir, S. Abu Bakar, S. Abdullah, Z. Zainal, S. H. Sarijo, and M. Rusop, Raman Spectroscopic Study of Carbon Nanotubes Prepared Using Fe/ZnO-Palm Olein-Chemical Vapour Deposition, Journal of Nanomaterials. (2012).

DOI: 10.1155/2012/451473

Google Scholar

[13] S. Kamikura, T. Uchida, K. Naka, T. Asaji, H. Uchiyama, and Y. Yoshida, Single-walled carbon nanotube growth using cobalt nanoparticles prepared by vacuum deposition on a surface-active liquid , Diamond and Related Materials. 20 (2010) 863-865.

DOI: 10.1016/j.diamond.2011.04.007

Google Scholar

[14] T. -L. Sung, Y. -A. Chao, C. -M. Liu, K. Teii, S. Teii, and C. -Y. Hsu, Deposition of amorphous hydrogenated carbon films on Si and PMMA by pulsed direct-current plasma CVD, Thin Solid Films. 519(2010) 6688-6692.

DOI: 10.1016/j.tsf.2011.04.075

Google Scholar

[15] M. Rusop, A. Omer, S. Adhikari, S. Adhikary, H. Uchida, T. Soga, T. Jimbo, and M. Umeno, Effects of annealing temperature on the optical, bonding, structural and electrical properties of nitrogenated amorphous carbon thin films grown by surface wave microwave plasma chemical vapor deposition, Journal of Materials Science. 41(2006).

DOI: 10.1007/s10853-005-2635-y

Google Scholar

[16] D. Beeman, J. Silverman, R. Lynds, and M. R. Anderson, Modeling studies of amorphous carbon, Physical Review B. 30(1984) 870-875.

DOI: 10.1103/physrevb.30.870

Google Scholar

[17] G. Kalita, H. R. Aryal, S. Adhikari, D. C. Ghimire, R. A. Afre, T. Soga, M. Sharon, and M. Umeno, Fluorine incorporated amorphous carbon thin films prepared by Surface Wave Microwave Plasma CVD, Diamond and Related Materials. 17(2008) 1697-1701.

DOI: 10.1016/j.diamond.2008.02.002

Google Scholar

[18] Ashraf M.M. Omer, SudipAdhikari, Sunil Adhikary, Mohamad Rusop, Hideo Uchida, Tetsuo Soga, Masayoshi Umeno, Electrical conductivity improvement by iodine doping for diamond-like carbon thin-films deposited by microwave surface wave plasma CVD, Diamond & Related Materials. 15 (2006).

DOI: 10.1016/j.diamond.2005.11.045

Google Scholar

[19] O. S. Panwar, M. A. Khan, B. S. Satyanarayana, S. Kumar, and Ishpal, Properties of boron and phosphorous incorporated tetrahedral amorphous carbon films grown using filtered cathodic vacuum arc process, Applied Surface Science. 256 (2010).

DOI: 10.1016/j.apsusc.2010.02.035

Google Scholar

[20] Paul K. Chu, Liuhe Li, Characterization of amorphous and nanocrystalline carbon films, Materials Chemistry and Physics. 96 (2006) 253-277.

Google Scholar

[21] M. Rusop, X.M. Tian, S.M. Mominuzzaman, T. Soga, T. Jimbo, M. Umeno, Photoelectrical properties of pulsed laser deposited boron doped p-carbon/n-silicon and phosphorus doped n-carbon/p-silicon heterojunction solar cells, Solar Energy. 78(2005).

DOI: 10.1016/j.solener.2004.08.005

Google Scholar

[22] Latha Kumari, S.V. Subramanyam, S. Eto, K. Takai, T. Enoki, Metal–insulator transition in iodinated amorphous conducting carbon films, Carbon. 42(2004) 2133–2137.

DOI: 10.1016/j.carbon.2004.04.019

Google Scholar

[23] H. A. Yu, Y. Kaneko, S. Yoshimura, and S. Otani, Photovoltaic cell of carbonaceous film/n type silicon, Applied Physics Letters. 68(1996) 547-549.

DOI: 10.1063/1.116395

Google Scholar