Properties of Iodine Doped Amorphous Carbon Thin Films Grown by Thermal CVD

Article Preview

Abstract:

Thin film of undoped and doped amorphous carbon has been achieved using the simple thermal CVD system in an ambient gas of Ar and Ar with I2, respectively. The electrical and optical properties of the iodine doped amorphous carbon (a-C:I) thin films were studied. The incorporation of iodine into the amorphous carbon thin film results in increase of electrical conductivity as doping temperature increase up to 400°C, which indicates that doping effect of iodine. Heterojuction is confirmed by rectifying current-voltage characteristics of a-C:I/n-Si junction. The decreasing of optical band gap from 0.54 to 0.25 eV after iodine doping was determined which contribute to induce graphitization in the films. Raman result indicates that sp2 and sp3 bonded carbon atoms were dominated in the both with and without iodine doped thin films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

294-299

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Rusop, T. Kinugawa, T. Soga, T. Jimbo, Preparation and microstructure properties of tetrahedral amorphous carbon films by pulsed laser deposition using camphoric carbon target, Diamond Relat. Mater. 13 (2004) 2174-2179.

DOI: 10.1016/j.diamond.2004.06.035

Google Scholar

[2] H. Zhu, J. Wei, K. Wang, D. Wu, Applications of carbon materials in photovoltaic solar cells, Solar Ener. Mater. Sol. Cells 93 (2009) 1461-1470.

DOI: 10.1016/j.solmat.2009.04.006

Google Scholar

[3] S. Adhikari, S. Adhikary, A.M.M. Omer, M. Rusop, H. Uchida, T. Soga, M. Umeno, Synthesis of nitrogen incorporated diamond-like carbon thin films using microwave surface-wave plasma cvd, Diamond Relat. Mater. 14 (2005) 1824-1827.

DOI: 10.1016/j.diamond.2005.06.028

Google Scholar

[4] J. Robertson, Properties and prospects for non-crystalline carbons, J. Non-Cryst. Solids 299–302 (2002) 798-804.

DOI: 10.1016/s0022-3093(01)00985-1

Google Scholar

[5] P.K. Chu, L. Li, Characterization of amorphous and nanocrystalline carbon films, Mater. Chem. Phys. 96 (2006) 253-277.

Google Scholar

[6] J. -C. Pu, S. -F. Wang, C. -L. Lin, J.C. Sung, Characterization of boron-doped diamond-like carbon prepared by radio frequency sputtering, Thin Solid Films 519 (2010) 521-526.

DOI: 10.1016/j.tsf.2010.07.018

Google Scholar

[7] D.B. Mahadik, S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Physical properties of chemical vapour deposited nanostructured carbon thin films, J. Alloys Compd. 509 (2011) 1418-1423.

DOI: 10.1016/j.jallcom.2010.11.021

Google Scholar

[8] S. De, S. Niranjana, B.S. Satyanarayana, K. Mohan Rao, Raman spectroscopy and conductivity variation of nanocluster carbon thin films grown using a room temperature based cathodic arc process, Sci. Iran. 18 (2011) 797-803.

DOI: 10.1016/j.scient.2011.07.001

Google Scholar

[9] S.M. Mominuzzaman, K.M. Krishna, T. Soga, T. Jimbo, M. Umeno, Raman spectra of ion beam sputtered amorphous carbon thin films deposited from camphoric carbon, Carbon 38 (2000) 127-131.

DOI: 10.1016/s0008-6223(99)00107-4

Google Scholar

[10] A.M.M. Omer, S. Adhikari, S. Adhikary, H. Uchida, M. Umeno, Effects of iodine doping on optoelectronic properties of diamond-like carbon thin films deposited by microwave surface wave plasma cvd, Diamond Relat. Mater. 13 (2004) 2136-2139.

DOI: 10.1016/j.diamond.2004.05.010

Google Scholar

[11] M. Rusop, A.M.M. Omer, S. Adhikari, S. Adhikary, H. Uchida, T. Soga, T. Jimbo, M. Umeno, Effects of deposition gas pressure on the properties of hydrogenated amorphous carbon nitride films grown by surface wave microwave plasma chemical vapor deposition, Diamond Relat. Mater. 14 (2005).

DOI: 10.1016/j.diamond.2004.12.040

Google Scholar

[12] E. Cappelli, D.M. Trucchi, S. Kaciulis, S. Orlando, A. Zanza, A. Mezzi, Effect of deposition temperature on chemical composition and electronic properties of amorphous carbon nitride (a-cnx) thin films grown by plasma assisted pulsed laser deposition, Thin Solid Films 519 (2011).

DOI: 10.1016/j.tsf.2011.01.194

Google Scholar

[13] E. Liu, X. Shi, L.K. Cheah, Y.H. Hu, H.S. Tan, J.R. Shi, B.K. Tay, Electrical behaviour of metal/tetrahedral amorphous carbon/metal structure, Solid-State Electronics 43 (1999) 427-434.

DOI: 10.1016/s0038-1101(98)00257-3

Google Scholar

[14] A.M.M. Omer, S. Adhikari, S. Adhikary, M. Rusop, H. Uchida, T. Soga, M. Umeno, Electrical conductivity improvement by iodine doping for diamond-like carbon thin-films deposited by microwave surface wave plasma cvd, Diamond Relat. Mater. 15 (2006).

DOI: 10.1016/j.diamond.2005.11.045

Google Scholar

[15] B. Kleinsorge, A.C. Ferrari, J. Robertson, W.I. Milne, S. Waidmann, S. Hearne, Bonding regimes of nitrogen in amorphous carbon, Diamond Relat. Mater. 9 (2000) 643-648.

DOI: 10.1016/s0925-9635(99)00309-x

Google Scholar

[16] O.S. Panwar, M.A. Khan, B.S. Satyanarayana, S. Kumar, Ishpal, Properties of boron and phosphorous incorporated tetrahedral amorphous carbon films grown using filtered cathodic vacuum arc process, Appl. Surf. Sci. 256 (2010) 4383-4390.

DOI: 10.1016/j.apsusc.2010.02.035

Google Scholar

[17] L. Klibanov, M. Allon-Alaluf, N. Croitoru, A. Seidman, Study of photoconductivity in thin amorphous diamond-like carbon (a: Dlc) films prepared by r.F. Glow discharge technique, Diamond Relat. Mater. 5 (1996) 1414-1417.

DOI: 10.1016/s0925-9635(96)00572-9

Google Scholar

[18] L. Kumari, V. Prasad, S.V. Subramanyam, Effect of iodine incorporation on the electrical properties of amorphous conducting carbon films, Carbon 41 (2003) 1841-1846.

DOI: 10.1016/s0008-6223(03)00172-6

Google Scholar

[19] L. Valentini, V. Salerni, I. Armentano, J.M. Kenny, L. Lozzi, S. Santucci, Effects of fluorine incorporation on the properties of amorphous carbon/p-type crystalline silicon heterojunction diodes, J. Non-Cryst. Solids 321 (2003) 175-182.

DOI: 10.1016/s0022-3093(03)00181-9

Google Scholar