Solid-State Dye Sensitized Solar Cells: Effect of Hole Transport Material Properties to the Photovoltaic Performance

Article Preview

Abstract:

The improvement of solid-state dye sensitized solar cells requires identification and understanding of hole transport material properties at various deposition process that limit the energy conversion efficiency. A well-studied of this hole collectors properties, a high efficiency ss-DSSC is highly achievable. In this research work, the copper (I) iodide (CuI) had been deposited by spin coating and mist-atomization technique. The thin films characteristics of surface morphology and electrical properties and its effect to the photovoltaic performance were investigated. The thin films morphology examined by FESEM shows smaller CuI crystal size deposited by spin coating (S1) of ~30nm. Even though, smaller particle size of hole conductor is desirable in order to achieve high pore penetration, the thin film thickness and the electrical resistivity are also essential. The CuI thin films deposited by mist-atomization (M1) shows a low resistivity of 1.77 x 10-1 Ωcm which will greatly affect the device performance. The photovoltaic performance of ss-DSSC at different method CuI deposition shows the highest efficiency of 1.05% for sample (M1) while the ss-DSSC fabricated with S1 sample shows the lowest conversion efficiency of 0.02%. The appropriate crystals size of CuI, film thickness and the electrical resistivity greatly contributed to the high filling fraction of the porous TiO2 layer and hence the cells performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

317-323

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. G. Brian O'regan, Low cost and highly efficient solar cells based on the sensitization of colloidal titanium dioxide, Nature 353 (1991) 737-740.

Google Scholar

[2] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. MÃller, P. Liska, N. Vlachopoulos, and M. GrÃtzel, Conversion of light to electricity by cis-X 2bis(2, 2-bipyridyl-4, 4-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl -, Br -, I -, CN -, and SCN -) on nanocrystalline TiO2 electrodes, Journal of the American Chemical Society 115 (1993).

DOI: 10.1021/ja00067a063

Google Scholar

[3] I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency, Nature 485 (2012) 486-489.

DOI: 10.1038/nature11067

Google Scholar

[4] L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida, and M. Grätzel, Organic Dye for Highly Efficient Solid-State Dye-Sensitized Solar Cells, Advanced Materials 17 (2005) 813-815.

DOI: 10.1002/adma.200401410

Google Scholar

[5] H. J. Snaith, A. J. Moule, C. d. Klein, K. Meerholz, R. H. Friend, and M. GrÃtzel, Efficiency Enhancements in Solid-State Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture, Nano Letters 7 (2012) 3372-3376.

DOI: 10.1021/nl071656u

Google Scholar

[6] M. Wang, S. -J. Moon, M. Xu, K. Chittibabu, P. Wang, N. -L. Cevey-Ha, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel, Efficient and Stable Solid-State Dye-Sensitized Solar Cells Based on a High-Molar-Extinction-Coefficient Sensitizer, Small 6 (2010).

DOI: 10.1002/smll.200901317

Google Scholar

[7] M. Wang, J. Liu, N. -L. Cevey-Ha, S. -J. Moon, P. Liska, R. Humphry-Baker, J. -E. Moser, C. GrÃtzel, P. Wang, S. M. Zakeeruddin, and M. GrÃtzel, High efficiency solid-state sensitized heterojunction photovoltaic device, Nano Today 5 (2010).

DOI: 10.1016/j.nantod.2010.04.001

Google Scholar

[8] Y. Zhenzhen, C. P. Katherine, L. Di-Jia, R. Yang, and X. Tao, Solid dye-sensitized solar cells prepared through a counter strategy for filling of solid hole transporter, Journal of Renewable and Sustainable Energy 3 (2011) 063101.

DOI: 10.1063/1.3658435

Google Scholar

[9] G. R. R. A. K. K Tennakone, A R Kumarasinghe, K G U Wijayantha and P M Sirimanne, A dye-sensitized nano-porous solid-state photovoltaic cell, Semiconductor Science and Technology 10 (1995) 1689.

DOI: 10.1088/0268-1242/10/12/020

Google Scholar

[10] I. K. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. J. Rosenthal, F. Sauvage, M. Grätzel, and M. D. McGehee, Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance, Advanced Functional Materials 19 (2009).

DOI: 10.1002/adfm.200900541

Google Scholar

[11] M. Cardona, Optical properties of the silver and cuprous halides, Physics Revie 129 (1963) 69-78.

Google Scholar

[12] S.F. Lin, W.E. Spicer, and R. S. Bauer, Temperature-dependent photoemission studies of the electronic states of CuBr, Physics Review B 14 (1976) p.4551.

DOI: 10.1103/physrevb.14.4551

Google Scholar

[13] H. Feraoun, H. Aourag, and M. Certier, Theoretical studies of substoichiometric CuI, Material Chemical Physics 82 (2003) 597-601.

DOI: 10.1016/s0254-0584(03)00318-3

Google Scholar

[14] D. Chen, Y. Wang, Z. Lin, J. Huang, X. Chen, D. Pan, and F. Huang, Growth strategy and physical properties of the high mobility p-type CuI crystal, Crystal Growth and Design 10 (2010) 2057-(2060).

DOI: 10.1021/cg100270d

Google Scholar

[15] V. P. S. Perera and K. Tennakone, Recombination processes in dye-sensitized solid-state solar cells with CuI as the hole collector, Solar Energy Materials and Solar Cells, 79 (2003) 249-255.

DOI: 10.1016/s0927-0248(03)00103-x

Google Scholar

[16] J. Han, J. M. Chen, X. W. Zhou, Y. Lin, J. B. Zhang, J. G. Jia, and B. R. Sankapal, Efficiency enhancement of solid-state dye sensitized solar cell by in situ deposition of CuI, Surface and Interface Analysis, 40 (2008) 1393-1396.

DOI: 10.1002/sia.2913

Google Scholar

[17] J. B. Mooney and S. B. Radding, Spray Pyrolysis Processing, Annual Review of Materials Science12 (1982) 81-101.

Google Scholar

[18] G. R. A. Kumara, A. Konno, K. Shiratsuchi, J. Tsukahara, and K. Tennakone, Dye-Sensitized Solid-State Solar Cells: Use of Crystal Growth Inhibitors for Deposition of the Hole Collector, Chemistry of Materials 14 (2002) 954-955.

DOI: 10.1021/cm011595f

Google Scholar

[19] G. R. A. Kumara, S. Kaneko, M. Okuya, and K. Tennakone, Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor, Langmuir, 18 (2002) 10493-10495.

DOI: 10.1021/la020421p

Google Scholar

[20] M. H. M. A.R. Zainun, U.M. Noor and M. Rusop, Particles Size and Conductivity Study of P-Type Copper (I) Iodide (CuI) Thin Film for Solid State Dye-Sensitized Solar Cells, IOP Conference Series: Materials Science and Engineering 17 (2011) 012009.

DOI: 10.1088/1757-899x/17/1/012009

Google Scholar

[21] K. Fredin, E. M. J. Johansson, T. Blom, M. Hedlund, S. Plogmaker, H. Siegbahn, K. Leifer, and H. Rensmo, Using a molten organic conducting material to infiltrate a nanoporous semiconductor film and its use in solid-state dye-sensitized solar cells, Synthetic Metals, 159 (2009).

DOI: 10.1016/j.synthmet.2008.06.029

Google Scholar

[22] R. R. Khalid Siraj, Electrical Conductivity Behavior of CdHgI4 – CuI Mixed System, International Journal of Chemistry3 (2011) 174-179.

Google Scholar

[23] M. Bouderbala, S. Hamzaoui, B. Amrani, A. H. Reshak, M. Adnane, T. Sahraoui, and M. Zerdali, Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films, Physica B: Condensed Matter 403 (2008) 3326-3330.

DOI: 10.1016/j.physb.2008.04.045

Google Scholar

[24] S. Mridha and D. Basak, Effect of thickness on the structural, electrical and optical properties of ZnO films, Materials Research Bulletin 42 (2007) 875-882.

DOI: 10.1016/j.materresbull.2006.08.019

Google Scholar

[25] X. -t. Zhang, I. Sutanto, T. Taguchi, K. Tokuhiro, Q. -b. Meng, T. N. Rao, A. Fujishima, H. Watanabe, T. Nakamori, and M. Uragami, Al2O3-coated nanoporous TiO2 electrode for solid-state dye-sensitized solar cell, Solar Energy Materials and Solar Cells 80 (2003).

DOI: 10.1039/b306118c

Google Scholar