Photovoltaic Characteristics of Hybrid MEH-PPV and TiO2 Nanoparticle Based Organic Solar Cells

Article Preview

Abstract:

The photovoltaic properties of organic solar cells based on hybrid poly [2-methoxy-5-(2-ethylhexyloxy-p-phenylenevinylen) (MEH-PPV) and anatase titanium dioxide (TiO2) nanoparticles as a function of TiO2 concentration were investigated. Synthesis of TiO2 nanoparticles was performed by sol-gel immerses heated method and been used as a filler in MEH-PPV polymer matrix. The hybrid MEH-PPV: TiO2 solar cells exhibited increased in light absorption and power conversion efficiency than the pristine organic solar cell. By further optimizing the concentration of TiO2 nanoparticles, the short-circuit current of the hybrid MEH-PPV: TiO2 was reached up to 0.004823 (mA/cm2) and the corresponding power conversion efficiency was 0.000378% was obtained under Air Mass 1.5 illumination which was more than 80% higher compared to the device without TiO2 nanoparticles. This indicates by embedded TiO2 nanoparticles in MEH-PPV matrix encouraging the charge transportation in the active layer of organic solar cells device.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

300-306

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Chandrasekaran, D. Nithyaprakash, K. B. Ajjan, S. Maruthamuthu, D. Manoharan, and S. Kumar, Hybrid solar cell based on blending of organic and inorganic materials - An overview, Renewable and Sustainable Energy Reviews 15 (2010) 1228-1238.

DOI: 10.1016/j.rser.2010.09.017

Google Scholar

[2] W. -H. Baek, H. Yang, T. -S. Yoon, C. J. Kang, H. H. Lee, and Y. -S. Kim, Effect of P3HT: PCBM concentration in solvent on performances of organic solar cells, Solar Energy Materials and Solar Cells 93 (2009) 1263-1267.

DOI: 10.1016/j.solmat.2009.01.019

Google Scholar

[3] Y. Li, Y. -B. Hou, H. Jin, Q. -M. Shi, and X. -L. Zhang, Effect of TiO2 Nanotubes on Polymer-Fullerene Bulk Heterojunction Solar Cells, Chinese Physics Letters 24 (2007) 2654.

Google Scholar

[4] F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Effects of Postproduction Treatment on Plastic Solar Cells, Advanced Functional Materials 13 (2003) 85-88.

DOI: 10.1002/adfm.200390011

Google Scholar

[5] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology, Advanced Functional Materials 15(2005) 1617-1622.

DOI: 10.1002/adfm.200500211

Google Scholar

[6] D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, and D. S. Ginley, Hybrid photovoltaic devices of polymer and ZnO nanofiber composites, Thin Solid Films 496 (2006) 26-29.

DOI: 10.1016/j.tsf.2005.08.179

Google Scholar

[7] A. J. Breeze, Z. Schlesinger, S. A. Carter, and P. J. Brock, Charge transport in TiO2/MEH-PPV polymer photovoltaics, Physical Review B 64 (2001) 125205.

Google Scholar

[8] P. M. Sirimanne, T. Shirata, L. Damodare, Y. Hayashi, T. Soga, and T. Jimbo, An approach for utilization of organic polymer as a sensitizer in solid-state cells, Solar Energy Materials and Solar Cells 77 (2003)15-24.

DOI: 10.1016/s0927-0248(02)00241-6

Google Scholar

[9] C. C. Oey, A. B. Djurisic, H. Wang, K. K. Y. Man, W. K. Chan, M. H. Xie, Y. H. Leung, A. Pandey, J. M. Nunzi, and P. C. Chui, Polymer TiO2 solar cells: TiO2 interconnected network for improved cell performance, Nanotechnology 17 (2006) 706.

DOI: 10.1088/0957-4484/17/3/015

Google Scholar

[10] M. Z. Musa, M. F. Malek, M. H. Mamat, U. M. Noor, N. A. Rashied, and M. Rusop, Effects Of Spin Coating Speed On Nanostructured Titanium Dioxide (TiO2) Thin Films Properties, American Institute of Physics 1341 (2011) 33-36.

DOI: 10.1109/escinano.2010.5701016

Google Scholar

[11] W. U. Huynh, J. J. Dittmer, W. C. Libby, G. L. Whiting, and A. P. Alivisatos, Controlling the Morphology of Nanocrystal–Polymer Composites for Solar Cells, Advanced Functional Materials 13 (2003) 73-79.

DOI: 10.1002/adfm.200390009

Google Scholar

[12] S. H. Yang, T. P. Nguyen, P. Le Rendu, and C. S. Hsu, Optical and electrical properties of PPV/SiO2 and PPV/TiO2 composite materials, Composites Part A: Applied Science and Manufacturing 36 (2005) 509-513.

DOI: 10.1016/j.compositesa.2004.10.008

Google Scholar

[13] A. Petrella, M. Tamborra, P. D. Cozzoli, M. L. Curri, M. Striccoli, P. Cosma, G. M. Farinola, F. Babudri, F. Naso, and A. Agostiano, TiO2 nanocrystals MEH-PPV composite thin films as photoactive material, Thin Solid Films 451-452 (2004) 64-68.

DOI: 10.1016/j.tsf.2003.10.106

Google Scholar

[14] S. Moradi, P. Aberoomand-Azar, S. Raeis-Farshid, S. Abedini-Khorrami, and M. H. Givianrad, The effect of different molar ratios of ZnO on characterization and photocatalytic activity of TiO2/ZnO nanocomposite, Journal of Saudi Chemical Society (2012).

DOI: 10.1016/j.jscs.2012.08.002

Google Scholar

[15] S. L. M Nam, J Park, SW Kim and KK Lee, Development of Hybrid Photovoltaic Cells by Incorporating CuInS2 Quantum Dots into Organic Photoactive Layers, Japanese Journal of Applied Physics 50 (2011) 06GF02.

DOI: 10.1143/jjap.50.06gf02

Google Scholar

[16] V. V. Bruevich, T.S.H. Makhmutov, S.G. Elizarov, E. M. Nechvolodova, and D. Y. Paraschuk, Raman spectroscopy of intermolecular charge transfer complex between a conjugated polymer-inorganic acceptor molecules, Journal of Chemical Physics 127 (2007).

DOI: 10.1063/1.2767266

Google Scholar

[17] G. D. Sharma, P. Suresh, S. K. Sharma, and M. S. Roy, Optical and electrical properties of hybrid photovoltaic devices from poly (3-phenyl hydrazone thiophene) (PPHT) and TiO2 blend films, Solar Energy Materials and Solar Cells 92 (2008) 61-70.

DOI: 10.1016/j.solmat.2007.08.009

Google Scholar

[18] T. M. Brown, J. S. Kim, R. H. Friend, and F. Cacialli, Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly (3, 4-ethylene dioxythiophene) hole injection layer, Applied Physic Letter 75 (1999).

DOI: 10.1063/1.124789

Google Scholar

[19] E. Kymakis and G. A. J. Amaratunga, Single-wall carbon nanotube/conjugated polymer photovoltaic devices, Applied Physic Letter 80 (2002) 112-114.

DOI: 10.1063/1.1428416

Google Scholar

[20] M. Zhu, T. Cui, and K. Varahramyan, Experimental and theoretical investigation of MEH-PPV based Schottky diodes, Microelectronic Engineering 75 (2004) 269-274.

DOI: 10.1016/j.mee.2004.05.011

Google Scholar

[21] M. Girtan and M. Rusu, Role of ITO and PEDOT: PSS in stability/degradation of polymer: fullerene bulk heterojunctions solar cells, Solar Energy Materials and Solar Cells 94 (2010) 446-450.

DOI: 10.1016/j.solmat.2009.10.026

Google Scholar

[22] C. Y. Kwong, A. B. Djurisic, P. C. Chui, K. W. Cheng, and W. K. Chan, Influence of solvent on film morphology and device performance of poly (3-hexylthiophene): TiO2 nanocomposite solar cells, Chemical Physics Letters. 384 (2004) 372-375.

DOI: 10.1016/j.cplett.2003.12.045

Google Scholar

[23] J. S. Salafsky, Exciton dissociation, charge transport, and recombination in ultrathin, conjugated polymer-TiO2 nanocrystal intermixed composites, Physical Review B. 59 (1999) 10885-10894.

DOI: 10.1103/physrevb.59.10885

Google Scholar