Advanced Materials Research
Vols. 732-733
Vols. 732-733
Advanced Materials Research
Vols. 726-731
Vols. 726-731
Advanced Materials Research
Vols. 724-725
Vols. 724-725
Advanced Materials Research
Vol. 723
Vol. 723
Advanced Materials Research
Vol. 722
Vol. 722
Advanced Materials Research
Vol. 721
Vol. 721
Advanced Materials Research
Vols. 718-720
Vols. 718-720
Advanced Materials Research
Vol. 717
Vol. 717
Advanced Materials Research
Vol. 716
Vol. 716
Advanced Materials Research
Vols. 712-715
Vols. 712-715
Advanced Materials Research
Vol. 711
Vol. 711
Advanced Materials Research
Vol. 710
Vol. 710
Advanced Materials Research
Vol. 709
Vol. 709
Advanced Materials Research Vols. 718-720
Paper Title Page
Abstract: On exposure of high-voltage microsecond pulsed fields, the molten and solid electrolytes are transited into a prolonged non-equilibrium state with increased electrical conductivity and disappeared characteristic peaks in Raman spectra. During the multistep relaxation of non-equilibrium electrolytes the initial conductivity and Raman spectra are restored to the values and patterns characteristic for equilibrium system.
146
Abstract: Recently,research of surface plasmon polaritons in metal has been hot.in this paper, we study the surface plasmon polaritons modes in silver nanowire, explore the way of different excitations affect modes. and explore the impact of different physical parameters for the mode ratio.
151
Abstract: A modified test fixture to measure the shear properties of composite laminates was designed and manufactured based upon Iosipescu shear test method. Tests on interlaminar shear propertis of T300/BMI composite laminates were conducted according to ASTM D 5379 test standard. Interlaminar shear stress/strain curves and shear failure modes were obtained. The test results showed that the modified shear test fixture and test method were effective in measuring the shear properties of composite laminates.
157
Abstract: In order to understand the variation of ammonia as a cooling refrigerant, the ammonia coolant is being used in power plant air cooling system. The subcooled boiling phase transformation of ammonia in a horizontal pipe tube was simulated through the application of the CFD fluid computational platform, the fluid state parameters in the tube were given at the same time. The speed variation along the axis of the tube was obtained, the speed is increasing, the Reynolds number corresponding substantial increase in the convective heat transfer coefficient corresponds to raise; The vapor volume fraction and boiling heat transfer coefficient along the tube were obtained. The boiling can strengthen the heat transfer significantly. The results showed that the ammonia as a cooling refrigerant by raising the Reynolds number and the use of the latent heat absorb these dual characteristics to improve the heat transfer coefficient is worth promoting.
162
Abstract: In this paper we consider an approach, which allows the research of order-disorder transitionin lattice systems (with any distribution of the exchange integrals) in the frame of Ising model. Anew order parameters, which can give a description of a phase transitions, are found. The commondefinition of such order parameter is the mean value of percolation cluster size. Percolation clusterincludes spins in ground state. The transition from absolute disorder to correlated phase could bestudied with using of percolation theory methods.
166
Abstract: Poly(ethylene glycol) methyl ether-grafted-graphene oxide (GO) was synthesized by a coupling reaction and formed inclusion complexes (ICs) after selective threading of the mPEG segments of the GO-mPEG through the cavities of α-cyclodextrins (α-CDs) units. The polypseudorotaxane structures of the as-obtained hydrogels were confirmed by X-ray diffraction, TGA, DSC, and SEM. The complexation of the mPEG segments with α-CDs and the hydrogen-bond interaction between CDs resulted in the formation of supramolecular hybrid hydrogels with a strong network. The resultant hybrid hydrogels were found to be thermo-responsive, and could be applied as a promising drug delivery system.
172
Abstract: Wood-plastic composites are a group of materials with potential to penetrate markets currently dominated by plastic or wood products. The surface properties of wood-plastic composite materials have been found to be similar to those of polyolefin materials, thereby presenting a challenge to the use of adhesive joining methods. Plasma chemistry can be performed to improve the adhesive properties of polyolefin materials. In this research, the effect of atmospheric plasma treatment on polypropylene and spruce (Picea abies) wood-plastic composite surfaces is investigated by contact angle measurement with sessile drop method and tensile strength tests of glued samples. The plasma treatment is performed on extruded WPC profiles. Confocal Raman microscopy and scanning electron microscopy are used for analysis of the material surface. The results show an increase in the contact angle of plasma treated WPC materials and an improvement in the tensile strength of glued samples following plasma treatment. Observation of the Raman spectrum indicates an increase in polar groups after plasma treatment. Scanning electron microscopy shows changes in the surface of the treated samples, which can be seen as increased porosity, possibly due to etching as a result of the plasma treatment. It is concluded that atmospheric plasma treatment for adhesion improvement of WPC materials can therefore be applied successfully, although it has a mechanical effect on the surface of the material.
176
Abstract: The double cantilever beam (DCB) test method and the modified beam theory are adopted to investigate the Mode I interlaminar fracture toughness of multi-directional composite laminates. The test procedure was developed by using a stereoscopic microscope to observe the delamination front tip and a testing machine to record the displacement and load data. A dial indicator was used to eliminate the error due to initial clearance in the clamp. A modified beam theory and a compliance calibration method were used to calculate the interlaminar fracture toughness. The Mode I interlaminar fracture toughness of carbon fiber reinforced bismaleimide resin matrix (BMI) composite laminates with four different interface patterns ( 0/0, 45/-45, 0/-45 and 0/90, respectively) was obtained. The results show that the patterns of interface ply angles have an obvious influence on Mode I interlaminar fracture toughness of composite laminates.
186
Abstract: In order to analyze the characteristics of secondary ignition of AP/HTPB base bleed propellant, the quenched samples of AP/HTPB base bleed propellant are made under the condition of transient depressurization, and experiments on thermal decomposition of this micro sample are carried by means of differential scanning calorimeter (DSC). The experimental results are obtained under two heating rates of 20°C/min and 40°C/min. They are analyzed and compared with the original sample of AP/HTPB. The kinetic parameters are estimated according to thermal decomposition rate equation and thermograms.
191
Abstract: The conventional study of NOx removal is mainly concentrated on the various chemical reactions, but takes no account of the important effect of temperature increase caused by the discharge. In this paper, we present a method whereby the reactive temperature in reaction region can be easily measured without affecting the discharge. By measuring the reactive temperature, it is revealed that the temperature in reaction region is closely related and linearly enhanced with the discharge power, and that the catalysis is not the main reason for the reactive temperature increase. By the investigation on the temperatures effect on the NOx removal, it is found that the NOx removal rate increases with the rise of temperature in reaction region. Therefore, the NOx removal is tightly related with the temperature in reaction region that can be controlled by the discharge intensity under the various ambient temperatures.
196