Application of Porous Nanomaterials for Sustained and Targeted Drug Release

Article Preview

Abstract:

Patients must take significant doses of drugs to acquire the therapeutic effects required for disease therapy due to the absence of selectivity and accessibility of medicinal molecules. Drugs contain a range of drug carriers that are available to transport therapeutic chemicals to the targeted issues in the body. Mesoporous materials are choice for overcoming the aforementioned issues and producing effects in a predictable and long-term way. Because of its chemical characteristics, thermal stability, & biocompatibility, mesophoric nanoparticles are commonly utilized as release reagents. The innovative silica mesophore technology allows for efficient drug loading and administration after the target site has been reached. The additives used to manufacture MSNs can affect the property of mesoporous materials, including pore width, porosity, drug load, and surface characteristics. The need for an active surface provides for surface treatment as well as the coupling of therapeutic substances. They are widely employed in the bio-medical industry for diagnosis, target medication administration, bio-sensing, cellular absorption, and so on. The purpose of this study is, to sum up the existing level of information about mesoporous nanomaterials and their applications in diverse healthcare sectors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-110

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Swami, S. Jinjun, G. Suresh, R. A. Votruba, K, Nagesh, C. O. Farokhzad. Nanoparticles for targeted and temporally controlled drug delivery. In, Svenson S, Prud'homme RK, editors. Multifunctional Nanoparticles for Drug Delivery, Applications, Imaging, Targeting, and Delivery, Nanostructure Science Technology. Bostan, USA, Springer, 2012. pp.9-25.

DOI: 10.1007/978-1-4614-2305-8_2

Google Scholar

[2] V.J. Mohanraj, Y.Chen. Nanoparticle, A review. Trop J Pharm Res 5, (2006), 561-573.

Google Scholar

[3] K. Sooyeon, R. K. Singh, C. Wojciech. Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng 4, (2013), 1-35.

Google Scholar

[4] L. Brannon-Peppas. Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. Int J Pharm 116, (1995), 1-9.

DOI: 10.1016/0378-5173(94)00324-x

Google Scholar

[5] Kresge CT, Leonowicz ME, Roth WJ. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, (1992), 710-2.

DOI: 10.1038/359710a0

Google Scholar

[6] Y.A. Shchipunov, Y.V. Burtseva, T. Y Karpenko, N.M. Shevchenko, T.N. Zvyagintseva, M. Starikayasss, et al. Highly efficient immobilization of endo-1, 3-beta-d-glucanases (laminarinases) from marine mollusks in novel hybrid polysaccharide-silica nanocomposites with regulated composition. J Mol Catal 40 (2006), 16-23.

DOI: 10.1016/j.molcatb.2006.02.002

Google Scholar

[7] Y. Klichko, M. Liong, E. Choi, S. Angelos, A.E. Nel, E. Stoddart, et al. Mesostructured silica for optical functionality, nanomachines, and drug delivery. J Am Ceram Soc 92, (2009), S2-10.

DOI: 10.1111/j.1551-2916.2008.02722.x

Google Scholar

[8] C. Tourne-Peteilh, S. Begu, D.A. Lerner, A. Galarneau, U. Lafont, J.M. Devoisselle. Sol-gel one-pot synthesis in soft conditions of mesoporous silica materials ready for drug delivery system. J Solgel Sci Technol 61, (2012), 455-462.

DOI: 10.1007/s10971-011-2646-x

Google Scholar

[9] M. Liong, J. Lu, M. Kovochich, T. Xia, S.G. Ruehm, A.E. Nel, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2, (2008), 889-896.

DOI: 10.1021/nn800072t

Google Scholar

[10] C. Hongmin, Z. Zipeng, X. Jin. Label-free luminescent mesoporous silica nanoparticles for imaging and drug delivery. Theranostic 3, (2013), 650-657.

Google Scholar

[11] J. Xie, S. Lee, X. Chen. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62, (2012), 1064-1079.

Google Scholar

[12] X. Lin, J. Xie, G. Niu, F. Zhang, H. Gao, M. Yang, et al. Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett 11, (2011), 814-819.

DOI: 10.1021/nl104141g

Google Scholar

[13] C. Fruijtier-Pölloth. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material. Toxicology 294, (2012), 61-79.

DOI: 10.1016/j.tox.2012.02.001

Google Scholar

[14] J.L. Vivero-Escoto, J. Luis. Surface functionalized mesoporous silica nanoparticles for intracellular drug delivery. Diss Abstr Int 71, (2009), 621-638.

DOI: 10.31274/etd-180810-1758

Google Scholar

[15] P. Selvam, S.K. Bhatia, C.G. Sonwane. Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves. Ind Eng Chem Res 40, (2001), 3237-3261.

DOI: 10.1021/ie0010666

Google Scholar

[16] M. Gary-Bobo, O. Hocine, D. Brevet, M. Maynadier, L. Raehm, S. Richeter, et al. Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm 423, (2012), 509-515.

DOI: 10.1016/j.ijpharm.2011.11.045

Google Scholar

[17] H.H. Yiu, P.A. Wright. Enzymes supported on ordered mesoporous solids, A special case of an inorganic-organic hybrid. Mater Chem 15, (2005), 3690-3700.

DOI: 10.1039/b506090g

Google Scholar

[18] B.G. Trewyn, I.I. Slowing, S. Giri, H.T. Chen, V.S. Lin. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc Chem Res 40, (2007), 846-853.

DOI: 10.1021/ar600032u

Google Scholar

[19] S. Radin, P. Ducheyne, T. Kamplain , B. H. Tan. Silica sol-gel for the controlled release of antibiotics. I. Synthesis, characterization, and in vitro release. J Biomed Mater Res 57, (2001), 313-320.

DOI: 10.1002/1097-4636(200111)57:2<313::aid-jbm1173>3.0.co;2-e

Google Scholar

[20] A. Rambabu. Novel synthesis, structure and functions of mesoporous silica materials. Uppsala, Acta Universitatis Upsaliensis, 2010. pp.13-24.

Google Scholar

[21] A. Firouzi, D. Kumar, L. M. Bull, T. Besier, P. Sieger, Q. Huo, et al.nCooperative organization of inorganic-surfactant and biomimetic assemblies. Science 267, (1995), 1138-1143.

DOI: 10.1126/science.7855591

Google Scholar

[22] R.E. Yanes, F. Tamanoi. Development of mesoporous silica nanomaterials as a vehicle for anticancer drug delivery. Ther Deliv 3, (2012), 389-404.

DOI: 10.4155/tde.12.9

Google Scholar

[23] J. Lu, M. Liong, J.I. Zink, F. Tamanoi. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3, (2007), 1341-1346.

DOI: 10.1002/smll.200700005

Google Scholar

[24] X. Huang, L. Li, T. Liu, N. Hao, H. Liu, D. Chen, et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5, (2011), 5390-9.

DOI: 10.1021/nn200365a

Google Scholar

[25] Portin L. Layer by Layer Assembly of the Polyelectrolyte on Mesoporous Silicon. Biosciences, University of Eastern Finland, Finland, 2012. pp.1-59.

Google Scholar

[26] Bergman L, Kankaanpaa L, Tiitta S, Duchanoy A, Li L, Heino J, et al. Intracellular degradation of multilabeled poly (ethyleneimine) - Mesoporous silica-silica nanoparticles, Implications for drug release. Mol Pharm 10, (2013), 1795-1803.

DOI: 10.1021/mp3005879

Google Scholar

[27] T. Yu, A. Malugin, H. Ghandehari. Impact of silica nanoparticles design on cellular toxicity and haemolytic activity. ACS Nano 5, (2011), 5717-5728.

DOI: 10.1021/nn2013904

Google Scholar

[28] J. Zhang, Z.F. Yuan, Y. Wang, W.H. Chen, G.F. Luo, S.X. Cheng, et al. Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J Am Chem Soc 135, (2013), 5068-5073.

DOI: 10.1021/ja312004m

Google Scholar

[29] M. Vallet-Regi, I. Izquierdo-Barba, M. Colilla. Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery. Philos Trans R Soc A 370, (2012), 1400-1421.

DOI: 10.1098/rsta.2011.0258

Google Scholar

[30] H. Du, P.D. Hamilton, M.A. Reilly, A. d'Avignon, P. Biswas, N. Ravi. A facile synthesis of highly water-soluble, core-shell organo-silica nanoparticles with controllable size via sol-gel process. J Colloid Interface Sci 340, (2009), 202-208.

DOI: 10.1016/j.jcis.2009.08.032

Google Scholar

[31] S.M. Janib, A.S. Moses, J.A. MacKay. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 62, (2010), 1052-1063.

DOI: 10.1016/j.addr.2010.08.004

Google Scholar

[32] L.S. Wang, L.C. Wu, S.Y. Lu, L.L. Chang, I.T. Teng, C.M. Yang. Bio functionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drug delivery, Improved water suspensibility and decreased nonspecific protein binding. ACS Nano 4, (2010), 4371-4379.

DOI: 10.1021/nn901376h

Google Scholar

[33] D. Tarn, C.E. Ashley, M. Xue, E.C. Carnes, J.I. Zink, C.J. Brinker. Mesoporous silica nanoparticle nanocarriers, Biofunctionality and biocompatibility. Acc Chem Res 46, (2013), 792-801.

DOI: 10.1021/ar3000986

Google Scholar

[34] D. Singh, J.M. McMillan, X.M. Liu, H.M. Vishwasrao, A.V. Kabanov, M. Sokolsky-Papkov, et al. Formulation design facilitates magnetic nanoparticle delivery to diseased cells and tissues. Nanomedicine (Lond) 9, (2014), 469-485.

DOI: 10.2217/nnm.14.4

Google Scholar