DFT Analysis of the Indium-Antimony-Vacancy Cluster in Silicon

Article Preview

Abstract:

A cluster comprising of indium, antimony and a vacancy in silicon is analysed using the planewave pseudopotential technique. This cluster has a strong binding energy that inhibits indium diffusion after high temperature anneal cycles. Difficulties associated with the simulation of a vacancy using the supercell approach are initially highlighted. In comparison, the indium-antimony-vacancy cluster reveals stronger distortions and reduction in relaxation volume. The indium atom in the relaxed cluster shows nearly six-fold coordination whereas the antimony atom acquires four neighbours. Due to the low symmetry of the centre, in constrast to the isolated vacancy there is no propensity for a Jahn-Teller effect. It gives rise to two defect levels in the bandgap.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 245-246)

Pages:

29-38

Citation:

Online since:

October 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. M. De Souza, S. Chakravarti and Amitabh Jain, Gettering and Defect Engineering in Semiconductor Technology XI pg 425 to 432.

Google Scholar

[2] S. Solmi, A. Parisini, M. Bersanni and D. Giubertoni, V. Soncini, G. Carnevale, A. Benvenuti and A. Marmiroli, Journal Appl. Phys. 92, 1361 (2002).

DOI: 10.1063/1.1492861

Google Scholar

[3] I. Kizilyalli, T. L. Rich, F. A. Stevie and C. S. Rafferty, Journal Appl. Phys. 80, 4944 (1996).

Google Scholar

[4] M. J. Puska, S. Poykko, M. Pesola and R. M. Nieminen, Phys Rev B 58, 1318 (1998).

Google Scholar

[5] G. D. Watkins, Proceedings of the International Conference on the Physics of Semiconductors, Paris, 1964 (Academic Press, New York, 1965), Vol. 3, p.97.

Google Scholar

[6] G Kresse and J Furthmüller, Comput. Mater. Sci. 6. 16 (1996).

Google Scholar

[7] G Kresse and J. Hafner, Phys. Rev B 47 558 (1993).

Google Scholar

[8] D. M. Ceperly and B. J. Alder, Phys. Rev. Lett., 45, 566 (1980); J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

Google Scholar

[9] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

Google Scholar

[10] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

Google Scholar

[11] A. Resende, R. Jones, S. Oberg, P. R. Briddon, Phys. Rev. Lett. 82, 2111 (1999).

Google Scholar

[12] M.I. Probert and M.C. Payne, Phys. Rev. B 67, 075204 (2003).

Google Scholar

[13] J. Lento and R. M. Nieminen, J. Phys: Cond. Matter. 15, 4387 (2003).

Google Scholar

[14] J. L. Mercer, J. S. Nelson, A. F. Wright, E. B. Stechel, Modelling Simul. Mater. Sci. Eng. 6, 1 (1998).

Google Scholar

[15] G. V. Gibbs, D. F. Cox, M. B. Boisen Jr., R. T. Downs and N. L. Ross, Phys. Chem Minearals 30, 305 (2003).

Google Scholar

[16] R. F. W. Bader, Atoms in Molecules. A Quantum Theory, International serious of Monographs on Chemistry, Vol. 22 (Oxford University Press, Oxford, 1990).

Google Scholar