Electroless Ni-P Composites with ZrO2: Preparation, Characterization, Thermal Treatment

Abstract:

Article Preview

The study of composite electroless Ni-P coatings is pursued in order to obtain coatings on a metal substrate with advanced properties i.e. with high wear and corrosion resistance for particular engineering uses. Composite NiP-ZrO2 layers were prepared by simultaneous electroless co-deposition of Ni-P and ZrO2 on steel, from a reducing solution in which ZrO2 particles were kept in suspension by stirring. The particles load in the bath was 0, 0.5, 1.0, 2.0 and 5.0 g/l. The deposits of 30 m in thickness, were characterized for structure, morphology and hardness by scanning electron microscopy and microanalysis as well as X-ray diffraction. It was found that the maximum ZrO2 particle incorporation attained was 7-10% of Zr. Vickers microhardness was measured for the plain deposit and found to be 720 HV and for the maximum zirconia content of 10%, 820 HV. After a vacuum heat treatment for 10 min, the microhardness of the composite is found to be 1500 HV. The electrochemical linear polarization measurements in a corrosive NaCl 3.5% solution shows at 2.0 g/l bath load favourable conditions for the formation of a defects free composite deposit could be created.

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Edited by:

Andreas Öchsner, Graeme E. Murch, Ali Shokuhfar and João M.P.Q. Delgado

Pages:

899-905

DOI:

10.4028/www.scientific.net/DDF.297-301.899

Citation:

J. Novakovic et al., "Electroless Ni-P Composites with ZrO2: Preparation, Characterization, Thermal Treatment", Defect and Diffusion Forum, Vols. 297-301, pp. 899-905, 2010

Online since:

April 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.