Computational Fluid Dynamics (CFD) Based Simulated Study of Multi-Phase Fluid Flow

Abstract:

Article Preview

It is critical to understand multiphase flow applications with regard to dynamic behavior. In this paper, a systematic approach to the study of these applications is pursued, leading to separated flows comprising the effects of free surface flows and wetting. For the first time, wetting phenomena (three wetting regimes such as no wetting, 90 º wetting angle and absolute wetting) are added in the separated flow model. Special attention is paid to computational fluid dynamics (CFD) in order to envisage the relationship between complex metallurgical practices such as mass and momentum exchange, turbulence, heat, reaction kinetics and electromagnetic fields. Simulations are performed in order to develop sub-models for studying multiphase flow phenomena at larger scales. The outcomes show that a proper mixture of techniques is valuable for constructing larger-scale models based upon sub-models for recreating the hierarchical structure of a detailed CFD model applicable throughout the process.

Info:

Periodical:

Edited by:

David J. Fisher

Pages:

1-11

DOI:

10.4028/www.scientific.net/DDF.307.1

Citation:

M. R. Malik et al., "Computational Fluid Dynamics (CFD) Based Simulated Study of Multi-Phase Fluid Flow", Defect and Diffusion Forum, Vol. 307, pp. 1-11, 2010

Online since:

December 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.