Localised Vibrational Mode in CuO:Sn (5 at%) Nanoparticles

Article Preview

Abstract:

An experimental and theoretical investigation of defect modes in tin-doped cupric oxide (Sn-doped CuO) nanoparticles synthesized via a one-step solid-state reaction was reported. The defect mode at 455 cm-1 due to Sn doping in CuO nanoparticles, calculated using a molecular model, was compared with the experimental value of 458 cm-1 obtained from the FTIR vibrational spectrum. The Debye-Waller factor (DWF) of CuO nanoparticles was determined using Rietveld refinement of the XRD pattern and the Wilson’s plot, and the results were discussed on the basis of the number of surface atoms and thermal vibrations. The effect of defect modes upon the DWF of Sn-doped CuO nanoparticles was also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-51

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Chen, J.M. Langlois, Y. Guo and W.A. Goddard: Proc. Natl. Acad. Sci., 86 (1989) 3447.

Google Scholar

[2] J. Ziolo, F. Borsa, M. Corti, A. Rigamonti and F. Parmigiani: J. Appl. Phys., 67 (1990) 5864.

Google Scholar

[3] X. Jiang, W. Huang, H. Li and X. Zheng: Energ. Fuel, 24 (2010) 261.

Google Scholar

[4] X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu and D.Y. Song: J. Phys. Chem. B, 108 (2004) 5547.

Google Scholar

[5] A.O. Musa, T. Akomolafe and M.J. Carter: Sol. Energy Mater. Sol. Cells, 51 (1998) 305.

Google Scholar

[6] J. Zhang, J. Liu, Q. Peng, X. Wang and Y. Li: Chem. Mater, 18 (2006) 867.

Google Scholar

[7] Y. Liu, L. Liao, J. Li and C. Pan: J. Phys. Chem. C, 111 (2007) 5050.

Google Scholar

[8] G. Korotcenkov, V. Brinzari and I. Boris: J. Mater. Sci., 43 (2008) 2761.

Google Scholar

[9] R. Kumar, A. Khanna, P. Tripathi, R.V. Nandedkar, S.R. Potdar, S.M. Chaudhari and S.S. Bhatti: J. Phys. D: Appl. Phys., 36 (2003) 2377.

Google Scholar

[10] X. Zhou, Q. Cao, H. Huang, P. Yang and Y. Hu: Mater. Sci. Eng. B, 99 (2003) 44.

Google Scholar

[11] H.W. Verleur and A.S. Barker Jr.: Phys. Rev., 149 (1966) 715.

Google Scholar

[12] H.W. Verleur and A.S. Barker Jr.: Phys. Rev., 155 (1967) 750.

Google Scholar

[13] X.K. Chen, R. Wiersma, C.X. Wang, O.J. Pitts, C. Dale, C.R. Bolognesi and S.P. Watkins: Appl. Phys. Lett., 80 (2002) (1942).

Google Scholar

[14] K.G. Subhadra and D.B. Sirdeshmukh: Pramana, 9 (1977) 223.

Google Scholar

[15] D.B. Sirdeshmukh and K.G. Subhadra: Current Science, 41 (1972) 808.

Google Scholar

[16] K.G. Subhadra and D.B. Sirdeshmukh: Pramana, 10 (1978) 357.

Google Scholar

[17] K.G. Subhadra and D.B. Sirdeshmukh: Pramana, 10 (1978 597.

Google Scholar

[18] K. Srinivas and D.B. Sirdeshmukh: Pramana, 23 (1984) 595.

Google Scholar

[19] W. Wang, Y. Zhan and G. Wang: Chem. Commun., (2001), doi: 10. 1039/b008215p.

Google Scholar

[20] S.S. Jaswal: Phys. Rev., 140 (1965) A687.

Google Scholar

[21] G. Kliche and Z.V. Popovic: Phys. Rev. B, 42 (1990) 10060.

Google Scholar

[22] P.V.B. Lakshmi and K. Ramachandran: Radiat. Eff. Defect Solid, 161 (2006) 365.

Google Scholar

[23] V.N. Popov: J. Phys: Condens. Matter, 7 (1995) 1625.

Google Scholar

[24] S. Koval, M.G. Stachiotti, R.L. Migoni, M.S. Moreno, R.C. Mercader and E.L. Peltzer y Blancá: Phys. Rev. B, 54 (1996) 7151.

DOI: 10.1103/physrevb.54.7151

Google Scholar

[25] G. Zou, H. Li, D. Zhang, K. Xiong, C. Dong and Y. Qian: J. Phys. Chem. B, 110 (2006) 1632.

Google Scholar

[26] Zaluska, L. Zaluski and J.O. Ström-Olsen: Appl. Phys. A, 72 (2001) 157.

Google Scholar

[27] P. Keblinski, S.R. Phillpot, S.U.S. Choi and J. A. Eastman: Int. J. Heat Mass Transfer, 45 (2002) 855.

Google Scholar

[28] B. Johannessen, P. Kluth, C.J. Glover, G.M. Azevedo, D.J. Llewellyn, G.J. Foran and M.C. Ridgway: J. Appl. Phys., 98 (2005) 024307.

Google Scholar

[29] M. Gnanasoundari and K. Ramachandran: Current Science, 55 (1986).

Google Scholar