A Brief Survey of the Literature on Silica Refractory Research and Development: The Case for Nanostructured Silica Obtained from Rice Husk Ash (RHA)

Article Preview

Abstract:

Silica refractory research and development has taken a down-turn; perhaps due to the problems associated with it, or because of concerns regarding earth conservation, earth being a major source of the raw material - quartz - which is used for silica refractory manufacture. In this review, the authors have pin-pointed the problems associated with silica refractory use from the researches of the early era (1913 to 1990) and have assessed the themes of current research, in order to ascertain how well these current researches have attended to the problems raised in the early research era. The review shows that the gaps identified in the early research era still remain unattended to. It concludes by making a case for nanostructured silica obtained from rice husk ash (RHA), for the production of silica refractory, as a way of solving these problems and making silica refractory production a booming industry once again.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-62

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] ASTM C71 - 08 Standard Terminologies Relating to Refractory.

Google Scholar

[2] A. R. Chesti, Refractories: manufacture, properties and applications, Delhi, Prentice-Hall of India Private Limited, (1990).

Google Scholar

[3] J. H. Chesters, Refractories: production and properties, The Iron and Steel Institute, London, (1973).

Google Scholar

[4] Bureau of Energy Efficiency Publications- Energy Efficiency in Thermal Utilities, Ministry of Power, India, (2005).

Google Scholar

[5] R.H. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry, NY, Wiley-Blackwell, (1979).

Google Scholar

[6] D. K. Smith, Opal, cristobalite and tridymite: Noncrystallinity versus crystallinity, nomenclature of the silica minerals and bibliography, Powder Diffraction, 13.

DOI: 10.1017/s0885715600009696

Google Scholar

[1] (1998) 2-19.

Google Scholar

[7] A. F. Kraplya, Materikin, Yu. V., Okun, V. G., Taruntaev, B. P., Feldman, V. Z., Apakin, V. M. and É. A. Stepanenko, Production of thermal insulation refractory plates and their use in the linings of continuous casting machine pony ladles, Refractory and Industrial Ceramics, 27[3-4] (1986).

DOI: 10.1007/bf01387551

Google Scholar

[8] C. N. Fenner, The stability relations of the silica minerals, Amer. J. Sci., 36 (1913) 331-84.

Google Scholar

[9] Floerke, O. W. Die Modificationen von SiO2, Fortschr. Min., 44 (1967) 181-230.

Google Scholar

[10] O. W. Floerke, Regelungserscheinungen bei der paramorphen Unwandlung von SiO2-Kristallen. Z. Krist., 112 (1959) 126-35.

DOI: 10.1524/zkri.1959.112.1-6.126

Google Scholar

[11] O. W. Floerke and H. Schneider, Intergrowth relationships between the SiO2-polymorphs quartz, cristobalite and tridymite in SiO2-rich ceramic materials. Ber. Dtsch. Keram. Ges., 63 (1986) 368-72.

Google Scholar

[12] O. W. Floerke, B. Martin, L. Benda, S. Paschen, H. E. Bergna, W. I. Roberts, W. A. Welsh, M. Ettlinger, Kerner, D., Kleinschmit, P., Meyer, J., Gies, H., and D. Schiffmann, Silica. Ullmann's Encyclopedia of Industrial Chemistry, VA23, VCH Publishers, Inc., New York, NY., (1993).

DOI: 10.1002/14356007.a23_583.pub3

Google Scholar

[13] O. W. Floerke, H. Graetsch, B. Martin, K. Roller, and R. Wirth, Nomenclature of micro- and non-crystalline silica minerals, based on structure and microstructure. Neues. Jahrb. Min. Abh., 163 (1991) 19-42.

Google Scholar

[14] O. W. Floerke, and B. Martin, Silica modifications and products. Ullmann's Encyclopedia of Industrial Chemistry, A23 (1993) 583-598, 654-5.

Google Scholar

[15] C. Frondel, The system of mineralogy, Vol. III. The silica minerals, 7th ed. J. Wiley and Sons, New York, (1962).

Google Scholar

[16] R. E. Garrison, R. B. Douglass, K. E. Pisciotto, C. M. Issacs, and J. C. Ingle, (Eds. ) The Monterey Formation and related siliceous rocks of California, Soc. Econ. Paleontol. Min., Pacific Section, Los Angeles, 68 (1981) 307-23.

Google Scholar

[17] S. J. Stevens, R. J. Hand and J. H. Sharp, Polymorphism of silica, Journal of Materials Science, 32 (1997) 2929-35.

Google Scholar

[18] R. B. Sosman, Phases of silica, Rutgers University Press, 1965, New Brunswick.

Google Scholar

[19] H. Norsker, The Self-reliant Potter: Refractories and Kilns, Friedr. Vieweg and Sohn Braunsweig /Weisbaden, (1987).

Google Scholar

[20] L. R. Drees, L. P. Wilding, N. E. Smeck, and A. L. Senkayi, in Minerals in Soil Environments 2nd ed. (eds Dixon, J. B. & Weed, S. B. ) (1989) 914–74 (Soil Science Soc. Am., Madison, Wisconsin.

Google Scholar

[21] O. W. Florke Zur frage des hoch, -cristobalit in opalen, bentoniten und glisem. Neues Jahrbuch fur Mineralogie, Monatshefte, (1955) 217-33.

Google Scholar

[22] J. B. Jones and E. R. Segnit, Mineralogical Magazine, 37 (1969) 287.

Google Scholar

[23] J. D. Gilchrist, Fuels, Furnace and Refractories, Pergamon Press, Oxford, (1977).

Google Scholar

[24] T. R. Lynam, Ceramics- a symposium, 448, Stoke-on-Trent, (1953), British Ceramic Society.

Google Scholar

[25] A.J. Dale, Trans. Ceram. Soc, 26 (1927) 203-25.

Google Scholar

[26] S. B. Holmquis, Conversion of Quartz to Tridymite, Journal of the American Ceramic Society, 44.

Google Scholar

[2] (1961) 82–6.

Google Scholar

[27] A. Muan and E. Osborn, Phase Equilibrium as a Guide in Refractory Technology, Bull. Amer. Ceram. Soc., 41.

Google Scholar

[7] (1962) 450-5.

Google Scholar

[28] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd Edition, John Wiley & Sons, New York (1975).

Google Scholar

[29] S. McDowell, (1916) A Study of Silica Refractory, Bull. Am. Inst. Min. Eng., IIQ, (2007).

Google Scholar

[30] D.W. Ross, Silica refractory, factors affecting their quality and methods of testing the raw materials and finished ware, Journal of the Franklin Institute, 187.

DOI: 10.1016/s0016-0032(19)91092-1

Google Scholar

[3] (1919) 353-5.

Google Scholar

[31] W. Hugill and W. J. Rees, Trans. A. Ceram. Soc, 25 (1925-1926) 86.

Google Scholar

[32] J. Podwomy, and J. Zawada, The structure of low-temperature tridymite in silica refractories, Solid State Phenomena, 163 (2010) 187-90.

DOI: 10.4028/www.scientific.net/ssp.163.187

Google Scholar

[33] Y. Kikuchi and H. Sudo, Thermal expansion of vitreous silica: Correspondence between dilatation curve and phase transitions in crystalline silica, J. Appl. Phys., 82.

DOI: 10.1063/1.366279

Google Scholar

[8] (1997) 4121-3.

Google Scholar

[34] G. Almarahle, Production of silica-refractory bricks from white sand, American Journal of Applied Sciences, 2.

DOI: 10.3844/ajassp.2005.465.468

Google Scholar

[2] (2005) 465-8.

Google Scholar

[35] A. A. Mohammed, Mechanical and Physical Properties of Silica Bricks Produced from Local Materials, Australian Journal of Basic and Applied Sciences, 3.

Google Scholar

[2] (2009) 418-23.

Google Scholar

[36] P. Manivasaka, V. Rajendran, P. R. Rauta, B.B. Sahu, P. Sahu, B.K. Panda, S. Valiyaveettill, and S. Jegadesan, Effect of TiO2 Nanoparticles on Properties of Silica Refractory, Journal of the American Ceramic Society, 93.

DOI: 10.1111/j.1551-2916.2010.03727.x

Google Scholar

[8] (2010) 2236–43.

Google Scholar

[37] C.E. Semler, Refractory. in Industrial Minerals and Rocks: Commodities, Markets and Uses, Kogel, J.E. and Trivedi, N. C. (Eds), Society of Mining, Metallurgy and Exploration, (2006), 1471-90.

Google Scholar

[38] W. Davies, Trans. Brit. Ceram. Soc., 47 (1948) 53.

Google Scholar

[39] K.Y. Foo and B.H. Hameed, Utilization of rice husk ash as novel adsorbent: a judicious recycling of the colloidal agricultural waste, Advances in Colloid and Interface Science, 152[1-2] (2009) 39-47.

DOI: 10.1016/j.cis.2009.09.005

Google Scholar

[40] M. Bhagiyalakshmi, Lee Ji Yun, R. Anuradha, Hyun Tae Jang, Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting. Journal of Hazardous Materials, 175[1-3] (2010).

DOI: 10.1016/j.jhazmat.2009.10.097

Google Scholar

[41] K. N. Farooque, M. Zaman, E. Halim, S. Islam, M. Hossain, Y. A. Mollah and A. J. Mahmood, Characterization and Utilization of Rice Husk Ash (RHA) from Rice Mill of Bangladesh, Bangladesh J. Sci. Ind. Res., 44.

DOI: 10.3329/bjsir.v44i2.3666

Google Scholar

[2] (2009) 157-62.

Google Scholar

[42] A. M. Shazim, A. S. Muhammad, A. Hassan, Utilization of Rice Husk Ash as viscosity modifying agent in Self Compacting Concrete, Construction and Building Materials, In Press.

DOI: 10.1016/j.conbuildmat.2010.06.074

Google Scholar

[43] Gemma Rodríguez de Sensale, Effect of rice-husk ash on durability of cementitious materials, Cement and Concrete Composites, 32.

DOI: 10.1016/j.cemconcomp.2010.07.008

Google Scholar

[9] (2010) 718-25.

Google Scholar

[44] M. H. Zhang, R. Lastra, V. M. Malhotra, Rice-husk ash paste and concrete: Some aspects of hydration and the microstructure of the interfacial zone between the aggregate and paste, Cement and Concrete Research, 26.

DOI: 10.1016/0008-8846(96)00061-0

Google Scholar

[6] (1996) 963-77.

Google Scholar

[45] W. Tangchirapat, R. Buranasing, C. Jaturapitakkul, and P. Chindaprasirt, Influence of rice husk–bark ash on mechanical properties of concrete containing high amount of recycled aggregates, Construction and Building Materials, 22.

DOI: 10.1016/j.conbuildmat.2007.05.004

Google Scholar

[8] (2008) 1812-9.

Google Scholar

[46] M.F.M., Zain, M.N. Islam, F. Mahmud and M. Jamil, Production of rice husk ash for use in concrete as a supplementary cementitious material, Construction and Building Materials, In Press.

DOI: 10.1016/j.conbuildmat.2010.07.003

Google Scholar

[47] H. Qingge Feng, S. Yamamichi, S. Sugita, Study on the pozzolanic properties of rice husk ash by hydrochloric acid pretreatment, Cement and Concrete Research, 34.

DOI: 10.1016/j.cemconres.2003.09.005

Google Scholar

[3] (2004) 521-6.

Google Scholar

[48] M. Sarıdemir, Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash, Construction and Building Materials, 24.

DOI: 10.1016/j.conbuildmat.2010.04.011

Google Scholar

[10] (2010) 1911-9.

Google Scholar

[49] P. Chindaprasirt, C. Jaturapitakkul and U. Rattanasak, Influence of fineness of rice husk ash and additives on the properties of lightweight aggregate, Fuel, 88.

DOI: 10.1016/j.fuel.2008.07.024

Google Scholar

[1] (2009) 158-62.

Google Scholar

[50] D.D. Bui, J. Hu and P. Stroeven, Particle size effect on the strength of rice husk ash blended gap-graded Portland cement concrete, Cement and Concrete Composites, 27.

DOI: 10.1016/j.cemconcomp.2004.05.002

Google Scholar

[3] (2005) 357-66.

Google Scholar

[51] P. Chindaprasirt and S. Rukzon, Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar, Construction and Building Materials, 22.

DOI: 10.1016/j.conbuildmat.2007.06.010

Google Scholar

[8] (2008) 1601-6.

Google Scholar

[52] B. Chatveera and P. Lertwattanaruk, Evaluation of sulfate resistance of cement mortars containing black rice husk ash, Journal of Environmental Management, 90.

DOI: 10.1016/j.jenvman.2008.09.001

Google Scholar

[3] (2009) 1435-41.

Google Scholar

[53] J. Salas, M. Alvarez and J. Veras, Lightweight insulating concretes with rice husk, International Journal of Cement Composites and Lightweight Concrete, 8.

DOI: 10.1016/0262-5075(86)90038-2

Google Scholar

[3] (1986) 171-80.

Google Scholar

[54] P. C. Kapur, Thermal insulations from rice husk ash, an agricultural waste, Ceramurgia, 6.

DOI: 10.1016/0390-5519(80)90045-9

Google Scholar

[2] (1980), 75-8.

Google Scholar

[55] C. S. Prasad, K. N. Maiti and R. Venugopal, Effect of rice husk ash in whiteware compositions, Ceramics International, 27.

DOI: 10.1016/s0272-8842(01)00010-4

Google Scholar

[6] (2001) 629-35.

Google Scholar

[56] N. Yalçin and V. Sevinç, Studies on silica obtained from rice husk, Ceramics International, 27.

DOI: 10.1016/s0272-8842(00)00068-7

Google Scholar

[2] (2001) 219-24.

Google Scholar

[57] Tzong-Horng Liou, Preparation and characterization of nano-structured silica from rice husk, Materials Science and Engineering, 364[1-2] (2004) 313-23.

DOI: 10.1016/j.msea.2003.08.045

Google Scholar

[58] R. Conradt, P. Pimkhaokham, and U. Leela-Adisorn, Nano-structured silica from rice husk, Journal of Non-Crystalline Solids, 145 (1992) 75-9.

DOI: 10.1016/s0022-3093(05)80433-8

Google Scholar

[59] M.R.F. Gonçalves and C.P. Bergmann, Thermal insulators made with rice husk ashes: Production and correlation between properties and microstructure, Construction and Building Materials, 21.

DOI: 10.1016/j.conbuildmat.2006.05.057

Google Scholar

[12] (2007) 2059-65.

Google Scholar

[60] S. Rukzon, P. Chindaprasirt, and R. Mahachai, Effect of grinding on chemical and physical properties of rice husk ash, International Journal of Minerals, Metallurgy and Materials, 16.

DOI: 10.1016/s1674-4799(09)60041-8

Google Scholar

[2] (2009) 242-7.

Google Scholar