[1]
ASTM C71 - 08 Standard Terminologies Relating to Refractory.
Google Scholar
[2]
A. R. Chesti, Refractories: manufacture, properties and applications, Delhi, Prentice-Hall of India Private Limited, (1990).
Google Scholar
[3]
J. H. Chesters, Refractories: production and properties, The Iron and Steel Institute, London, (1973).
Google Scholar
[4]
Bureau of Energy Efficiency Publications- Energy Efficiency in Thermal Utilities, Ministry of Power, India, (2005).
Google Scholar
[5]
R.H. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry, NY, Wiley-Blackwell, (1979).
Google Scholar
[6]
D. K. Smith, Opal, cristobalite and tridymite: Noncrystallinity versus crystallinity, nomenclature of the silica minerals and bibliography, Powder Diffraction, 13.
DOI: 10.1017/s0885715600009696
Google Scholar
[1]
(1998) 2-19.
Google Scholar
[7]
A. F. Kraplya, Materikin, Yu. V., Okun, V. G., Taruntaev, B. P., Feldman, V. Z., Apakin, V. M. and É. A. Stepanenko, Production of thermal insulation refractory plates and their use in the linings of continuous casting machine pony ladles, Refractory and Industrial Ceramics, 27[3-4] (1986).
DOI: 10.1007/bf01387551
Google Scholar
[8]
C. N. Fenner, The stability relations of the silica minerals, Amer. J. Sci., 36 (1913) 331-84.
Google Scholar
[9]
Floerke, O. W. Die Modificationen von SiO2, Fortschr. Min., 44 (1967) 181-230.
Google Scholar
[10]
O. W. Floerke, Regelungserscheinungen bei der paramorphen Unwandlung von SiO2-Kristallen. Z. Krist., 112 (1959) 126-35.
DOI: 10.1524/zkri.1959.112.1-6.126
Google Scholar
[11]
O. W. Floerke and H. Schneider, Intergrowth relationships between the SiO2-polymorphs quartz, cristobalite and tridymite in SiO2-rich ceramic materials. Ber. Dtsch. Keram. Ges., 63 (1986) 368-72.
Google Scholar
[12]
O. W. Floerke, B. Martin, L. Benda, S. Paschen, H. E. Bergna, W. I. Roberts, W. A. Welsh, M. Ettlinger, Kerner, D., Kleinschmit, P., Meyer, J., Gies, H., and D. Schiffmann, Silica. Ullmann's Encyclopedia of Industrial Chemistry, VA23, VCH Publishers, Inc., New York, NY., (1993).
DOI: 10.1002/14356007.a23_583.pub3
Google Scholar
[13]
O. W. Floerke, H. Graetsch, B. Martin, K. Roller, and R. Wirth, Nomenclature of micro- and non-crystalline silica minerals, based on structure and microstructure. Neues. Jahrb. Min. Abh., 163 (1991) 19-42.
Google Scholar
[14]
O. W. Floerke, and B. Martin, Silica modifications and products. Ullmann's Encyclopedia of Industrial Chemistry, A23 (1993) 583-598, 654-5.
Google Scholar
[15]
C. Frondel, The system of mineralogy, Vol. III. The silica minerals, 7th ed. J. Wiley and Sons, New York, (1962).
Google Scholar
[16]
R. E. Garrison, R. B. Douglass, K. E. Pisciotto, C. M. Issacs, and J. C. Ingle, (Eds. ) The Monterey Formation and related siliceous rocks of California, Soc. Econ. Paleontol. Min., Pacific Section, Los Angeles, 68 (1981) 307-23.
Google Scholar
[17]
S. J. Stevens, R. J. Hand and J. H. Sharp, Polymorphism of silica, Journal of Materials Science, 32 (1997) 2929-35.
Google Scholar
[18]
R. B. Sosman, Phases of silica, Rutgers University Press, 1965, New Brunswick.
Google Scholar
[19]
H. Norsker, The Self-reliant Potter: Refractories and Kilns, Friedr. Vieweg and Sohn Braunsweig /Weisbaden, (1987).
Google Scholar
[20]
L. R. Drees, L. P. Wilding, N. E. Smeck, and A. L. Senkayi, in Minerals in Soil Environments 2nd ed. (eds Dixon, J. B. & Weed, S. B. ) (1989) 914–74 (Soil Science Soc. Am., Madison, Wisconsin.
Google Scholar
[21]
O. W. Florke Zur frage des hoch, -cristobalit in opalen, bentoniten und glisem. Neues Jahrbuch fur Mineralogie, Monatshefte, (1955) 217-33.
Google Scholar
[22]
J. B. Jones and E. R. Segnit, Mineralogical Magazine, 37 (1969) 287.
Google Scholar
[23]
J. D. Gilchrist, Fuels, Furnace and Refractories, Pergamon Press, Oxford, (1977).
Google Scholar
[24]
T. R. Lynam, Ceramics- a symposium, 448, Stoke-on-Trent, (1953), British Ceramic Society.
Google Scholar
[25]
A.J. Dale, Trans. Ceram. Soc, 26 (1927) 203-25.
Google Scholar
[26]
S. B. Holmquis, Conversion of Quartz to Tridymite, Journal of the American Ceramic Society, 44.
Google Scholar
[2]
(1961) 82–6.
Google Scholar
[27]
A. Muan and E. Osborn, Phase Equilibrium as a Guide in Refractory Technology, Bull. Amer. Ceram. Soc., 41.
Google Scholar
[7]
(1962) 450-5.
Google Scholar
[28]
W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd Edition, John Wiley & Sons, New York (1975).
Google Scholar
[29]
S. McDowell, (1916) A Study of Silica Refractory, Bull. Am. Inst. Min. Eng., IIQ, (2007).
Google Scholar
[30]
D.W. Ross, Silica refractory, factors affecting their quality and methods of testing the raw materials and finished ware, Journal of the Franklin Institute, 187.
DOI: 10.1016/s0016-0032(19)91092-1
Google Scholar
[3]
(1919) 353-5.
Google Scholar
[31]
W. Hugill and W. J. Rees, Trans. A. Ceram. Soc, 25 (1925-1926) 86.
Google Scholar
[32]
J. Podwomy, and J. Zawada, The structure of low-temperature tridymite in silica refractories, Solid State Phenomena, 163 (2010) 187-90.
DOI: 10.4028/www.scientific.net/ssp.163.187
Google Scholar
[33]
Y. Kikuchi and H. Sudo, Thermal expansion of vitreous silica: Correspondence between dilatation curve and phase transitions in crystalline silica, J. Appl. Phys., 82.
DOI: 10.1063/1.366279
Google Scholar
[8]
(1997) 4121-3.
Google Scholar
[34]
G. Almarahle, Production of silica-refractory bricks from white sand, American Journal of Applied Sciences, 2.
DOI: 10.3844/ajassp.2005.465.468
Google Scholar
[2]
(2005) 465-8.
Google Scholar
[35]
A. A. Mohammed, Mechanical and Physical Properties of Silica Bricks Produced from Local Materials, Australian Journal of Basic and Applied Sciences, 3.
Google Scholar
[2]
(2009) 418-23.
Google Scholar
[36]
P. Manivasaka, V. Rajendran, P. R. Rauta, B.B. Sahu, P. Sahu, B.K. Panda, S. Valiyaveettill, and S. Jegadesan, Effect of TiO2 Nanoparticles on Properties of Silica Refractory, Journal of the American Ceramic Society, 93.
DOI: 10.1111/j.1551-2916.2010.03727.x
Google Scholar
[8]
(2010) 2236–43.
Google Scholar
[37]
C.E. Semler, Refractory. in Industrial Minerals and Rocks: Commodities, Markets and Uses, Kogel, J.E. and Trivedi, N. C. (Eds), Society of Mining, Metallurgy and Exploration, (2006), 1471-90.
Google Scholar
[38]
W. Davies, Trans. Brit. Ceram. Soc., 47 (1948) 53.
Google Scholar
[39]
K.Y. Foo and B.H. Hameed, Utilization of rice husk ash as novel adsorbent: a judicious recycling of the colloidal agricultural waste, Advances in Colloid and Interface Science, 152[1-2] (2009) 39-47.
DOI: 10.1016/j.cis.2009.09.005
Google Scholar
[40]
M. Bhagiyalakshmi, Lee Ji Yun, R. Anuradha, Hyun Tae Jang, Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting. Journal of Hazardous Materials, 175[1-3] (2010).
DOI: 10.1016/j.jhazmat.2009.10.097
Google Scholar
[41]
K. N. Farooque, M. Zaman, E. Halim, S. Islam, M. Hossain, Y. A. Mollah and A. J. Mahmood, Characterization and Utilization of Rice Husk Ash (RHA) from Rice Mill of Bangladesh, Bangladesh J. Sci. Ind. Res., 44.
DOI: 10.3329/bjsir.v44i2.3666
Google Scholar
[2]
(2009) 157-62.
Google Scholar
[42]
A. M. Shazim, A. S. Muhammad, A. Hassan, Utilization of Rice Husk Ash as viscosity modifying agent in Self Compacting Concrete, Construction and Building Materials, In Press.
DOI: 10.1016/j.conbuildmat.2010.06.074
Google Scholar
[43]
Gemma Rodríguez de Sensale, Effect of rice-husk ash on durability of cementitious materials, Cement and Concrete Composites, 32.
DOI: 10.1016/j.cemconcomp.2010.07.008
Google Scholar
[9]
(2010) 718-25.
Google Scholar
[44]
M. H. Zhang, R. Lastra, V. M. Malhotra, Rice-husk ash paste and concrete: Some aspects of hydration and the microstructure of the interfacial zone between the aggregate and paste, Cement and Concrete Research, 26.
DOI: 10.1016/0008-8846(96)00061-0
Google Scholar
[6]
(1996) 963-77.
Google Scholar
[45]
W. Tangchirapat, R. Buranasing, C. Jaturapitakkul, and P. Chindaprasirt, Influence of rice husk–bark ash on mechanical properties of concrete containing high amount of recycled aggregates, Construction and Building Materials, 22.
DOI: 10.1016/j.conbuildmat.2007.05.004
Google Scholar
[8]
(2008) 1812-9.
Google Scholar
[46]
M.F.M., Zain, M.N. Islam, F. Mahmud and M. Jamil, Production of rice husk ash for use in concrete as a supplementary cementitious material, Construction and Building Materials, In Press.
DOI: 10.1016/j.conbuildmat.2010.07.003
Google Scholar
[47]
H. Qingge Feng, S. Yamamichi, S. Sugita, Study on the pozzolanic properties of rice husk ash by hydrochloric acid pretreatment, Cement and Concrete Research, 34.
DOI: 10.1016/j.cemconres.2003.09.005
Google Scholar
[3]
(2004) 521-6.
Google Scholar
[48]
M. Sarıdemir, Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash, Construction and Building Materials, 24.
DOI: 10.1016/j.conbuildmat.2010.04.011
Google Scholar
[10]
(2010) 1911-9.
Google Scholar
[49]
P. Chindaprasirt, C. Jaturapitakkul and U. Rattanasak, Influence of fineness of rice husk ash and additives on the properties of lightweight aggregate, Fuel, 88.
DOI: 10.1016/j.fuel.2008.07.024
Google Scholar
[1]
(2009) 158-62.
Google Scholar
[50]
D.D. Bui, J. Hu and P. Stroeven, Particle size effect on the strength of rice husk ash blended gap-graded Portland cement concrete, Cement and Concrete Composites, 27.
DOI: 10.1016/j.cemconcomp.2004.05.002
Google Scholar
[3]
(2005) 357-66.
Google Scholar
[51]
P. Chindaprasirt and S. Rukzon, Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar, Construction and Building Materials, 22.
DOI: 10.1016/j.conbuildmat.2007.06.010
Google Scholar
[8]
(2008) 1601-6.
Google Scholar
[52]
B. Chatveera and P. Lertwattanaruk, Evaluation of sulfate resistance of cement mortars containing black rice husk ash, Journal of Environmental Management, 90.
DOI: 10.1016/j.jenvman.2008.09.001
Google Scholar
[3]
(2009) 1435-41.
Google Scholar
[53]
J. Salas, M. Alvarez and J. Veras, Lightweight insulating concretes with rice husk, International Journal of Cement Composites and Lightweight Concrete, 8.
DOI: 10.1016/0262-5075(86)90038-2
Google Scholar
[3]
(1986) 171-80.
Google Scholar
[54]
P. C. Kapur, Thermal insulations from rice husk ash, an agricultural waste, Ceramurgia, 6.
DOI: 10.1016/0390-5519(80)90045-9
Google Scholar
[2]
(1980), 75-8.
Google Scholar
[55]
C. S. Prasad, K. N. Maiti and R. Venugopal, Effect of rice husk ash in whiteware compositions, Ceramics International, 27.
DOI: 10.1016/s0272-8842(01)00010-4
Google Scholar
[6]
(2001) 629-35.
Google Scholar
[56]
N. Yalçin and V. Sevinç, Studies on silica obtained from rice husk, Ceramics International, 27.
DOI: 10.1016/s0272-8842(00)00068-7
Google Scholar
[2]
(2001) 219-24.
Google Scholar
[57]
Tzong-Horng Liou, Preparation and characterization of nano-structured silica from rice husk, Materials Science and Engineering, 364[1-2] (2004) 313-23.
DOI: 10.1016/j.msea.2003.08.045
Google Scholar
[58]
R. Conradt, P. Pimkhaokham, and U. Leela-Adisorn, Nano-structured silica from rice husk, Journal of Non-Crystalline Solids, 145 (1992) 75-9.
DOI: 10.1016/s0022-3093(05)80433-8
Google Scholar
[59]
M.R.F. Gonçalves and C.P. Bergmann, Thermal insulators made with rice husk ashes: Production and correlation between properties and microstructure, Construction and Building Materials, 21.
DOI: 10.1016/j.conbuildmat.2006.05.057
Google Scholar
[12]
(2007) 2059-65.
Google Scholar
[60]
S. Rukzon, P. Chindaprasirt, and R. Mahachai, Effect of grinding on chemical and physical properties of rice husk ash, International Journal of Minerals, Metallurgy and Materials, 16.
DOI: 10.1016/s1674-4799(09)60041-8
Google Scholar
[2]
(2009) 242-7.
Google Scholar