Slow Positron Studies in Polymers

Article Preview

Abstract:

The diffusion trapping model has been applied to slow positron annihilation in He+ irradiated polystyrene and polystyrene – polystyrene bilayers. The S-parameter and the positron lifetime have been calculated as a function of the incident positron energy. The effect of the fluence upon the nature of the S-parameter curve has been discussed. It has been found that a change in fluence affects positronium formation. The transition rate for surface to positronium formation has been found to be dependent upon the fluence and the atomic number of the irradiated ion. The lifetime results show that, at low energy, the o-Ps annihilates mainly at the polymeric surface. The free volume hole concentration is found to decrease at low energy, and becomes constant at higher energies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-92

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Saito, F., Yotoriyama, T., Fujii, Y., Nagashima, Y., Nakao, A., Iwaki, M., Nishiyama, I., Hyodo, T., Study of ion-irradiated polystyrene using slow positron beam. Radiation Physics and Chemistry, 76 (2007) 200-3.

DOI: 10.1016/j.radphyschem.2006.03.035

Google Scholar

[2] Tashiro, M., Honda, Y., Terashima, Y., Watanabe, M., Pujari, P.K., Tagawa, S., Study of interfaces in polymer bilayers using slow positron beam. Applied Surface Science, 194 (2002) 182–8.

DOI: 10.1016/s0169-4332(02)00121-6

Google Scholar

[3] Jean, Y.C., Chen, Hongmin., Zhang, R., Li, Ying., Zhang, Junjie., Early stage of deterioration in polymeric coatings detected by positron annihilation spectroscopy. Progress in Organic Coatings, 52 (2005) 1-8.

DOI: 10.1016/j.porgcoat.2003.09.022

Google Scholar

[4] Brandt, W., Berko, S., Walker, W.W., Positronium decay in molecular substances, Physical Review, 120 (1960) 1289.

DOI: 10.1103/physrev.120.1289

Google Scholar

[5] McGervey, D., Walters, V.F., Correlation between lifetime momentum for positron annihilation in Teflon, Physical Review B, 2 (1970) 2421.

DOI: 10.1103/physrevb.2.2421

Google Scholar

[6] Shultz, P.J., Lynn, K.G., Interaction of positron beams with surfaces, thin films and interfaces, Reviews of Modern Physics, 60 (1988) 701.

DOI: 10.1103/revmodphys.60.701

Google Scholar

[7] Shrivastava, S.B., Rathore, M.K., Rathore, V., Joshi, K.P., Gupta V.K., Positron annihilation at polymeric surfaces, Surface Review and Letters, 11 (2004) 1-8.

DOI: 10.1142/s0218625x04005822

Google Scholar

[8] Consolati, G., Kansy, J., Pagoraro, M., Quasso, F., Zanderighi L., Positron annihilation study of free volume in cross-linked amorphous polyurethanes through the glass transition temperature, Polymer, 39s (1998) 3491.

DOI: 10.1016/s0032-3861(97)10063-5

Google Scholar

[9] Forrest J.A., Dalnoki Veress , K., Stevens, J.R., Duther, J.R., Effect of free surfaces on the glass transition temperature of thin polymer films, Physical Review Letters, 77 (1996) (2002).

DOI: 10.1103/physrevlett.77.2002

Google Scholar

[10] Aklonis, J.J., Macknight in W.J., Introduction to Polymer Viscoelasticity, 2nd Edition, John Wiley & Sons, NY (1983) p.15.

Google Scholar

[11] Cao, H., Zhang, R., Yuan, J.P., Huang, C.M., Jean Y.C., Suzuki, R., Odhria, T., Nielson, B., Free volume hole model for positronium formation in polymers: surface studies, Journal of Physics - Condensed Matter, 10 (1998) 10429.

DOI: 10.1088/0953-8984/10/46/011

Google Scholar

[12] Suzuki, C. He. T., Hamada, E., Kobayashi, Kondo, K., Santarovich, V.P., Ito Y., Materials Research Innovations, 7 (2003) 37.

Google Scholar

[13] Bartos J., Free volume microstructure of amorphous polymers of glass transition temperatures from positron annihilation spectroscopy data, Colloid and Polymer Science, 274 (1996) 14.

DOI: 10.1007/bf00658904

Google Scholar