Self-Diffusion in Nano-ZnO

Article Preview

Abstract:

Self-diffusion, both cationic and anionic, in ZnO nanoparticles was studied here in accord with reaction coordinate theory. The jump frequencies at various temperatures were computed. The isotope effect revealed that self-diffusion occurred mainly via a vacancy mechanism in nano ZnO; a result not previously reported in the literature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-35

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Earhart and K. Able: Applied Physics Letters, 88 (2006) 201918.

Google Scholar

[2] A.C.S. Sabioni, M.J.F. Ramos and W.B. Ferraz: Materials Research, 6.

Google Scholar

[2] (2003) 173.

Google Scholar

[3] M.A.D.N. Nogueira, W.B. Ferraz and A.C.S. Sabioni: Materials Research, 6.

Google Scholar

[2] (2003) 167.

Google Scholar

[4] G.W. Tomlins, J.L. Routbort and T.O. Mason: Journal of the American Ceramic Society, 81.

Google Scholar

[4] (1998) 869.

Google Scholar

[5] H. Haneda, I. Sakaguchi, A. Watanabe, T. Ishigaki and J. Tanaka: Journal of Electroceramics, 4[S1] (1999) 41.

Google Scholar

[6] G.W. Tomlins, J.L. Routbort and T.O. Mason: Journal of Applied Physics, 87.

Google Scholar

[1] (2000) 117.

Google Scholar

[7] H. Haneda, I. Sakaguchi, A. Watanabe and J. Tanaka: Defect and Diffusion Forum, 143 (1997) (1919).

Google Scholar

[8] E.A. Secco: Canadian Journal of Chemistry, 39 (1961) 1544.

Google Scholar

[9] J. Liu, P. Gao, W. Mai, C. Lao, Z.L. Wang and R. Tummala: Applied Physics Letters, 89 (2006) 063125.

Google Scholar

[10] B.N.N. Achar: Physical Review B, 10 (1970) 3848.

Google Scholar

[11] Zaluska, L. Zaluski and J.O. Ström-Olsen: Applied Physics A, 72 (2001) 157.

Google Scholar

[12] P. Keblinski, S.R. Phillpot, S.U.S. Choi and J. A. Eastman: International Journal of Heat and Mass Transfer, 45 (2002) 855.

Google Scholar

[13] P. Plumulle and M. Vandevyver: Physica Status Solidi B, 73 (1976) 271.

Google Scholar

[14] J. Serrano, F. Widulle, A.H. Romero, A. Rubio, R. Lauck and M. Cardona: Physica Status Solidi B, 235.

Google Scholar

[2] (2003) 260.

Google Scholar

[15] A.A. Maradudin, E.W. Montroll, G.H. Weiss et al.: Theory of Lattice Dynamics in the Harmonic Approximation, (2nd edition Academic Press, New York 1971).

Google Scholar

[16] A.D. Leclaire: Philosophical Magazine, 14 (1966) 1271.

Google Scholar

[17] N.L. Peterson and S.J. Rothman: Physical Review, 163.

Google Scholar

[3] (1967) 645.

Google Scholar

[18] W.J. Moore and E. L. Williams: Crystal Imperfections and the Chemical Reactivity of Solids (The Faraday Society, Aberdeen, Scotland, 1959), 86.

Google Scholar

[19] R. Robin, A.R. Cooper and A.H. Heuer: Journal of Applied Physics, 44.

Google Scholar

[8] (1973)3770.

Google Scholar

[20] D. Hallwig and H.G. Sockel: Reactivity of Solids (Plenum, New York, 1977) p.631.

Google Scholar

[21] K. Sadaiyandi and K. Ramachandran: Physica Status Solidi B, 170 (1992) K77.

Google Scholar

[22] K. Sadaiyandi and K. Ramachandran: Physica Status Solidi B, 155 (1989) K85.

Google Scholar

[23] Y. Madhavan, K. Ramachandran and T.M. Haridasan: Physica Status Solidi B, 158 (1990), 427.

Google Scholar

[24] Y. Madhavan, K. Ramachandran and T.M. Haridasan: Physica Status Solidi B, 154 (1989) 55.

Google Scholar