Local Density Diffusivity (LDD-) Model for Boron Out-Diffusion of In Situ Boron-Doped Si0.75Ge0.25 Epitaxial Films Post Advanced Rapid Thermal Anneals with Carbon Co-Implant

Abstract:

Article Preview

Boron in silicon has presented challenges for decades because of clustering and so-called transient enhanced diffusion [1-2]. An understanding of boron diffusion post rapid thermal annealing in general, and out of in situ doped epitaxially grown silicon-germanium films in particular, is essential to hetero junction engineering in microelectronic device technology today. In order to model boron diffusion, post-implantation, the local density diffusion (LDD) model has been applied in the past [3]. Via mathematical convolution of the diffusion model slope and the initial boron concentration profile, these former results were transferred to this work. In this way, non-diffusing boron was predicted to exist in the center of the presented in situ boron-doped films. In addition, boron diffusion control by co-implanted carbon was demonstrated and the applied LDD model was completed and confirmed by adapting A. Einstein’s proof [4] for this purpose.

Info:

Periodical:

Edited by:

David J. Fisher

Pages:

63-73

DOI:

10.4028/www.scientific.net/DDF.307.63

Citation:

F. Wirbeleit "Local Density Diffusivity (LDD-) Model for Boron Out-Diffusion of In Situ Boron-Doped Si0.75Ge0.25 Epitaxial Films Post Advanced Rapid Thermal Anneals with Carbon Co-Implant", Defect and Diffusion Forum, Vol. 307, pp. 63-73, 2010

Online since:

December 2010

Authors:

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.