Local Density Diffusivity (LDD-) Model for Boron Out-Diffusion of In Situ Boron-Doped Si0.75Ge0.25 Epitaxial Films Post Advanced Rapid Thermal Anneals with Carbon Co-Implant

Article Preview

Abstract:

Boron in silicon has presented challenges for decades because of clustering and so-called transient enhanced diffusion [1-2]. An understanding of boron diffusion post rapid thermal annealing in general, and out of in situ doped epitaxially grown silicon-germanium films in particular, is essential to hetero junction engineering in microelectronic device technology today. In order to model boron diffusion, post-implantation, the local density diffusion (LDD) model has been applied in the past [3]. Via mathematical convolution of the diffusion model slope and the initial boron concentration profile, these former results were transferred to this work. In this way, non-diffusing boron was predicted to exist in the center of the presented in situ boron-doped films. In addition, boron diffusion control by co-implanted carbon was demonstrated and the applied LDD model was completed and confirmed by adapting A. Einstein’s proof [4] for this purpose.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-73

Citation:

Online since:

December 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kim, Y.M.; Lo, G.Q.; Kwong, D.L.; Tasch, A.F.; Novak, S.: Extended defect evolution in boron‐implanted Si during rapid thermal annealing and its effects on the anomalous boron diffusion, Applied Physics Letters, 56.

DOI: 10.1063/1.102529

Google Scholar

[13] (1990) 1254-6, doi: 10. 1063/1. 102529.

Google Scholar

[2] Heinrich, M.; Budil, M.; Potzl, H.W.: Simulation of transient boron diffusion during rapid thermal annealing in silicon, Journal of Applied Physics, 69.

DOI: 10.1063/1.347466

Google Scholar

[12] (1991) 8133-8, doi: 10. 1063/1. 347466.

Google Scholar

[3] Wirbeleit, F.: Non-Gaussian Local Density Diffusion (LDD-) Model for Boron Diffusion in Si- and SixGe1-x Ultra Shallow Junctions Post Implant and Advanced Rapid Thermal Anneals, Defect and Diffusion Forum, 305-306 (2010).

DOI: 10.4028/www.scientific.net/ddf.305-306.71

Google Scholar

[4] Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,. Annalen der Physik, 17 (1905) 549–60.

DOI: 10.1002/andp.2005517s112

Google Scholar

[5] Horstmann, M.; Wei, A.; Kammler, T.; Hontschel, J.; Bierstedt, H.; Feudel, T.; Frohberg, K.; Gerhardt, M.; Hellmich, A.; Hempel, K.; Hohage, J.; Javorka, P.; Klais, J.; Koerner, G.; Lenski, M.; Neu, A.; Otterbach, R.; Press, P.; Reichel, C.; Trentsch, M.; Trui, B.; Salz, H.; Schaller, M.; Engelmann, H. -J.; Herzog, O.; Ruelke, H.; Hubler, P.; Stephan, R.; Greenlaw, D.; Raab, M.; Kepler, N.; Chen, H.; Chidambarrao, D.; Fried, D.; Holt, J.; Lee, W.; Nii, H.; Panda, S.; Sato, T.; Waite, A.; Liming, S.; Rim, K.; Schepis, D.; Khare, M.; Huang, S.F.; Pellerin, J.; Su, L.T.; Integration and optimization of embedded-sige, compressive and tensile stressed liner films, and stress memorization in advanced SOI CMOS technologies, Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, pp.233-236.

Google Scholar

[6] Reichel, M.; Moutanabbir, O.; Hoentschel, J.; Gösele1d, U.; Flachowsky, S.; Horstmann, M.: Strained Silicon Devices, Solid State Phenomena, 156-158 (2010) 61-8; doi: 10. 4028/www. scientific. net/SSP. 156-158. 61.

DOI: 10.4028/www.scientific.net/ssp.156-158.61

Google Scholar

[7] Doetsch,G.: Der Faltungssatz in der Theorie der Laplace Transformation,; Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 2e série, 4.

DOI: 10.2422/2036-2145.2007.1.04

Google Scholar

[1] (1935) 71-84.

Google Scholar

[8] Wirbeleit,F.: Non-Gaussian Diffusion of Phosphorus and Arsenic in Silicon with Local Density Diffusivity Model, Defect and Diffusion Forum, 303-304 (2010) 21-9, doi: 10. 4028/www. scientific. net/DDF. 303-304. 21.

DOI: 10.4028/www.scientific.net/ddf.303-304.21

Google Scholar

[9] Wirbeleit,F.: Non-Gaussian Diffusion Model for Phosphorus in Silicon Heavy-Doped Junctions, Diffusion Fundamentals, 9 (2009) 5. 1-5. 7 http: /www. uni-leipzig. de/diffusion/journal/pdf/volume9/diff_fund_9(2009)5. pdf.

Google Scholar

[10] Fick, A.; Über Diffusion", Poggendorff, s Annalen der Physik, 94 (1855) 59–86, doi: 10. 1002/andp. 18551700105.

Google Scholar

[11] Reichel, C.; Zeun, A.; Beernink, G.; Waite, A.; Wiatr, M.; Kessler, M.; Kammler, T.; Kronholz, S.; Grund, E.; Meyer, M. -A.; Gehre, D.; Zienert, I.; Engelmann, H. -J. : Process optimization of embedded SiGe with high Ge content for high volume production in 45nm SOI CMOS technology, 6th International Conference on Silicon Epitaxy and Heterostructures (ICSI-6) May 17-22, 2009, Los Angeles.

Google Scholar

[12] Feudel, Th.; Horstmann, M.; Herrmann, L.; Herden, M.; Gerhardt, M.; Greenlaw, D.; Fisher, D.; Kluth, J.: Process Integration Issues with Spike, Flash and Laser Anneal Implementation for 90 and 65nm Technologies, 14th International Conference on Advanced Thermal Processing of Semiconductors -RTP2006, 10-13 Oct. 2006, pp.73-8.

DOI: 10.1109/rtp.2006.367984

Google Scholar

[13] Boninelli, S.; Mirabella, S.; Bruno, E.; Priolo, F.; Cristiano, F.; Claverie, A.; De Salvador, D.; Bisognin, G.; Napolitani, E.; Evolution of boron-interstitial clusters in crystalline Si studied by transmission electron microscopy, Applied Physics Letters, 91.

DOI: 10.1063/1.2757145

Google Scholar

[3] (2007) 031905-3, doi: 10. 1063/1. 2757145.

Google Scholar