[1]
R. Viswanathan, W. Bakker, Materials for ultrasupercritical coal power plants - Boiler materials: Part I, J. Mat. Eng. Perform. 10 (2001) 81-95.
DOI: 10.1361/105994901770345394
Google Scholar
[2]
R. Viswanathan, W. Bakker, Materials for ultrasupercritical coal power plants - Turbine materials: Part II, J. Mat. Eng. Perform. 10 (2001) 96-101.
DOI: 10.1361/105994901770345402
Google Scholar
[3]
R. Viswanathan, J. F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, R. Purgert, U.S. program on materials technology for ultra-supercritical coal power plants, J. Mat. Eng. Perform. 14 (2005) 281-292.
DOI: 10.1361/10599490524039
Google Scholar
[4]
R.L. Klueh, A.T. Nelson, Ferritic/martensitic steels for next-generation reactors, J. Nucl. Mater. 371 (2007) 37–52.
DOI: 10.1016/j.jnucmat.2007.05.005
Google Scholar
[5]
I. Cook, Materials research for fusion energy, Nature Mater. 5 (2006) 77-80.
Google Scholar
[6]
S. Ukai, M. Fujiwara, Perspective of ODS alloys application in nuclear environments, J. Nucl. Mater. 307–311 (2002) 749–757.
DOI: 10.1016/s0022-3115(02)01043-7
Google Scholar
[7]
R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, D.T. Hoelzer, Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys, J. Nucl. Mater. 341 (2005) 103–114.
DOI: 10.1016/j.jnucmat.2005.01.017
Google Scholar
[8]
N. Baluc, J.L. Boutard, S.L. Dudarev, M. Rieth, J. Brito Correia, B. Fournier, J. Henry, F. Legendre, T. Leguey, M. Lewandowska, R. Lindau, E. Marquis, A. Muñoz, B. Radiguet, Z. Oksiuta, Review on the EFDA work programme on nano-structured ODS RAF steels, J. Nucl. Mater. 417 (2011).
DOI: 10.1016/j.jnucmat.2010.12.065
Google Scholar
[9]
S.J. Zinkle, Fusion materials science: Overview of challenges and recent progress, Phys. Plasmas 12 (2005) 058101 (8 pages).
DOI: 10.1063/1.1880013
Google Scholar
[10]
A. Möslang, T. Wiss, From fission towards fusion, Nature Mater. 5 (2006) 679-680.
DOI: 10.1038/nmat1715
Google Scholar
[11]
L. Malerba, A. Caro, J. Wallenius, Multiscale modelling of radiation damage and phase transformations: The challenge of FeCr alloys, J. Nucl. Mater. 382 (2008) 112-125.
DOI: 10.1016/j.jnucmat.2008.08.014
Google Scholar
[12]
C. Fazio, D. Gomez Briceño, M. Rieth, A. Gessi, J. Henry, L. Malerba, Innovative materials for Gen IV systems and transmutation facilities: The cross-cutting research project GETMAT, Nucl. Engng. Design 241 (2011) 3514-3520.
DOI: 10.1016/j.nucengdes.2011.03.009
Google Scholar
[13]
G. Bonny, D. Terentyev, L. Malerba, On the α–α' miscibility gap of Fe–Cr alloys, Scripta Mater. 59 (2008) 1193-1196.
DOI: 10.1016/j.scriptamat.2008.08.008
Google Scholar
[14]
V.L. Arbuzov, A.P. Druzhkov, A.L. Nikolaev, S.M. Klotsman, Investigation of radiation defects in Fe-Cr alloy, Rad. Eff. Def. Sol. 124 (1992) 409-415.
DOI: 10.1080/10420159208228867
Google Scholar
[15]
V. Krsjak, V. Slugen, M. Miklos, M. Petriska, P. Ballo, Application of positron annihilation spectroscopy on the ion implantation damaged Fe–Cr alloys, Appl. Surf. Sci. 255 (2008) 153-156.
DOI: 10.1016/j.apsusc.2008.05.279
Google Scholar
[16]
M. Lambrecht, L. Malerba, Positron annihilation spectroscopy on binary Fe–Cr alloys and ferritic/martensitic steels after neutron irradiation, Acta Mater. 59 (2011) 6547-6555.
DOI: 10.1016/j.actamat.2011.06.046
Google Scholar
[17]
V. Kuksenko, C. Pareige, C. Genevois, F. Cuvilly, M. Roussel, P. Pareige, Effect of neutron-irradiation on the microstructure of a Fe–12at. %Cr alloy, J. Nucl. Mater. 415 (2011) 61-66.
DOI: 10.1016/j.jnucmat.2011.05.042
Google Scholar
[18]
S.I. Porollo, A.M. Dvoriashin, A.N. Vorobyev, Yu.V. Konobeev, The microstructure and tensile properties of Fe-Cr alloys after neutron irradiation at 400°C to 5. 5-7. 1 dpa, J. Nucl. Mater. 256 (1998) 247-253.
DOI: 10.1016/s0022-3115(98)00043-9
Google Scholar
[19]
Z. Yao, M. Hernández-Mayoral, M.L. Jenkins, M.A. Kirk, Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 1: Damage evolution in thin-foils at lower doses, Phil. Mag. 88 (2008) 2851-2880.
DOI: 10.1080/14786430802380469
Google Scholar
[20]
M. Hernández-Mayoral, Z. Yao, M.L. Jenkins, M.A. Kirk, Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 2: Damage evolution in thin-foils at higher doses, Phil. Mag. 88 (2008) 2881-2897.
DOI: 10.1080/14786430802380477
Google Scholar
[21]
M. Matijasevic, A. Almazouzi, Effect of Cr on the mechanical properties and microstructure of Fe–Cr model alloys after n-irradiation, J. Nucl. Mater. 377 (2008) 147-154.
DOI: 10.1016/j.jnucmat.2008.02.061
Google Scholar
[22]
F. Bergner, A. Ulbricht, C. Heintze, Estimation of the solubility limit of Cr in Fe at 300 °C from small-angle neutron scattering in neutron-irradiated Fe–Cr alloys, Scripta Mater. 61 (2009) 1060-1063.
DOI: 10.1016/j.scriptamat.2009.08.028
Google Scholar
[23]
C. Heintze, F. Bergner, A. Ulbricht, H. Eckerlebe, The microstructure of neutron-irradiated Fe–Cr alloys: A small-angle neutron scattering study, J. Nucl. Mater. 409 (2011) 106-111.
DOI: 10.1016/j.jnucmat.2010.09.010
Google Scholar
[24]
C. Heintze, A. Ulbricht, F. Bergner, H. Eckerlebe, SANS investigation of neutron-irradiated Fe-Cr alloys, J. Phys.: Conf. Ser. 247 (2010) 012035 (8 pages).
DOI: 10.1088/1742-6596/247/1/012035
Google Scholar
[25]
G.S. Was, Fundamentals of Radiation Materials Science, first ed., Springer, Berlin, (2007).
Google Scholar
[26]
W. Anwand, G. Brauer, M. Butterling, H. -R. Kissener, A. Wagner, Design and Construction of a Slow Positron Beam for Solid and Surface Investigations, (see article in this book).
DOI: 10.4028/www.scientific.net/ddf.331.25
Google Scholar
[27]
A.F. Makhov , Electron penetration in Solids, Fiz. Tverdogo Tela, Soviet Physics Solid State 2 (1961) 2172-2175.
Google Scholar
[28]
M.J. Puska and R.M. Nieminen, Defect spectroscopy with positrons: a general calculational method, J. Phys. F 13 (1983), 333-346.
DOI: 10.1088/0305-4608/13/2/009
Google Scholar
[29]
A. van Veen, H. Schut, J. de Vries, R.A. Hakvoort, M.R. Ijpma, Analysis of positron profiling data by means of VEPFIT,. In: Positron beams for solids and surfaces, P.J. Schultz, G.R. Massoumi, P.J. Simpson editors. Amer. Inst. Phys., NY (1990).
DOI: 10.1063/1.40182
Google Scholar
[30]
C. Heintze, C. Recknagel, F. Bergner, M. Hernández-Mayoral, A. Kolitsch, Ion-irradiation-induced damage of steels characterized by means of nanoindentation, Nucl. Instr. Meth. Phys. Res. B 267 (2009) 1505-1508.
DOI: 10.1016/j.nimb.2009.01.122
Google Scholar
[31]
W. Anwand, G. Brauer, W. Skorupa, Vacancy-type defects in 6H-SiC caused by N+ and Al+ high fluence co-implantation, Appl. Surf. Sci. 194 (2002) 131-135.
DOI: 10.1016/s0169-4332(02)00112-5
Google Scholar
[32]
J.F. Ziegler, SRIM-2003, Nucl. Instr. Meth. Phys. Res. B 219–220 (2004) 1027-1036.
Google Scholar
[33]
M. Ando, H. Tanigawa, S. Jitsukawa, T. Sawai, Y. Katoh, A. Kohyama, K. Nakamura, H. Takeuchi, Evaluation of hardening behaviour of ion irradiated reduced activation ferritic/martensitic steels by an ultra-micro-indentation technique, J. Nucl. Mater. 307–311 (2002).
DOI: 10.1016/s0022-3115(02)01250-3
Google Scholar
[34]
M. J Puska, P. Lanki, R.M. Nieminen, Positron affinities for elemental metals, J. Phys.: Condens. Matter 1 (1989) 6081-6093.
DOI: 10.1088/0953-8984/1/35/008
Google Scholar
[35]
P. Hautojärvi, T. Judin, A. Vehanen, J. Yli-Kauppila, J. Johansson, J. Verdone, P. Moser, Annealing of vacancies in electron-irradiated α-iron, Solid State Communications, 29 (1979) 855-858.
DOI: 10.1016/0038-1098(79)90507-6
Google Scholar