Application of Positron Annihilation Spectroscopy to the Study of Irradiated Fe-Cr Alloys

Article Preview

Abstract:

The aim of this work was to investigate the effect of Cr on the microstructure of neutron-irradiated Fe-Cr alloys. Neutron irradiation-induced damage at its early stage was simulated by ion implantation. Positron Annihilation Spectroscopy was applied to identify irradiation-induced defects depending on the Cr-content in Fe-Cr alloys. Different irradiation scenarios were used to investigate the influences of irradiation step by step.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-179

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Viswanathan, W. Bakker, Materials for ultrasupercritical coal power plants - Boiler materials: Part I, J. Mat. Eng. Perform. 10 (2001) 81-95.

DOI: 10.1361/105994901770345394

Google Scholar

[2] R. Viswanathan, W. Bakker, Materials for ultrasupercritical coal power plants - Turbine materials: Part II, J. Mat. Eng. Perform. 10 (2001) 96-101.

DOI: 10.1361/105994901770345402

Google Scholar

[3] R. Viswanathan, J. F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, R. Purgert, U.S. program on materials technology for ultra-supercritical coal power plants, J. Mat. Eng. Perform. 14 (2005) 281-292.

DOI: 10.1361/10599490524039

Google Scholar

[4] R.L. Klueh, A.T. Nelson, Ferritic/martensitic steels for next-generation reactors, J. Nucl. Mater. 371 (2007) 37–52.

DOI: 10.1016/j.jnucmat.2007.05.005

Google Scholar

[5] I. Cook, Materials research for fusion energy, Nature Mater. 5 (2006) 77-80.

Google Scholar

[6] S. Ukai, M. Fujiwara, Perspective of ODS alloys application in nuclear environments, J. Nucl. Mater. 307–311 (2002) 749–757.

DOI: 10.1016/s0022-3115(02)01043-7

Google Scholar

[7] R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, D.T. Hoelzer, Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys, J. Nucl. Mater. 341 (2005) 103–114.

DOI: 10.1016/j.jnucmat.2005.01.017

Google Scholar

[8] N. Baluc, J.L. Boutard, S.L. Dudarev, M. Rieth, J. Brito Correia, B. Fournier, J. Henry, F. Legendre, T. Leguey, M. Lewandowska, R. Lindau, E. Marquis, A. Muñoz, B. Radiguet, Z. Oksiuta, Review on the EFDA work programme on nano-structured ODS RAF steels, J. Nucl. Mater. 417 (2011).

DOI: 10.1016/j.jnucmat.2010.12.065

Google Scholar

[9] S.J. Zinkle, Fusion materials science: Overview of challenges and recent progress, Phys. Plasmas 12 (2005) 058101 (8 pages).

DOI: 10.1063/1.1880013

Google Scholar

[10] A. Möslang, T. Wiss, From fission towards fusion, Nature Mater. 5 (2006) 679-680.

DOI: 10.1038/nmat1715

Google Scholar

[11] L. Malerba, A. Caro, J. Wallenius, Multiscale modelling of radiation damage and phase transformations: The challenge of FeCr alloys, J. Nucl. Mater. 382 (2008) 112-125.

DOI: 10.1016/j.jnucmat.2008.08.014

Google Scholar

[12] C. Fazio, D. Gomez Briceño, M. Rieth, A. Gessi, J. Henry, L. Malerba, Innovative materials for Gen IV systems and transmutation facilities: The cross-cutting research project GETMAT, Nucl. Engng. Design 241 (2011) 3514-3520.

DOI: 10.1016/j.nucengdes.2011.03.009

Google Scholar

[13] G. Bonny, D. Terentyev, L. Malerba, On the α–α' miscibility gap of Fe–Cr alloys, Scripta Mater. 59 (2008) 1193-1196.

DOI: 10.1016/j.scriptamat.2008.08.008

Google Scholar

[14] V.L. Arbuzov, A.P. Druzhkov, A.L. Nikolaev, S.M. Klotsman, Investigation of radiation defects in Fe-Cr alloy, Rad. Eff. Def. Sol. 124 (1992) 409-415.

DOI: 10.1080/10420159208228867

Google Scholar

[15] V. Krsjak, V. Slugen, M. Miklos, M. Petriska, P. Ballo, Application of positron annihilation spectroscopy on the ion implantation damaged Fe–Cr alloys, Appl. Surf. Sci. 255 (2008) 153-156.

DOI: 10.1016/j.apsusc.2008.05.279

Google Scholar

[16] M. Lambrecht, L. Malerba, Positron annihilation spectroscopy on binary Fe–Cr alloys and ferritic/martensitic steels after neutron irradiation, Acta Mater. 59 (2011) 6547-6555.

DOI: 10.1016/j.actamat.2011.06.046

Google Scholar

[17] V. Kuksenko, C. Pareige, C. Genevois, F. Cuvilly, M. Roussel, P. Pareige, Effect of neutron-irradiation on the microstructure of a Fe–12at. %Cr alloy, J. Nucl. Mater. 415 (2011) 61-66.

DOI: 10.1016/j.jnucmat.2011.05.042

Google Scholar

[18] S.I. Porollo, A.M. Dvoriashin, A.N. Vorobyev, Yu.V. Konobeev, The microstructure and tensile properties of Fe-Cr alloys after neutron irradiation at 400°C to 5. 5-7. 1 dpa, J. Nucl. Mater. 256 (1998) 247-253.

DOI: 10.1016/s0022-3115(98)00043-9

Google Scholar

[19] Z. Yao, M. Hernández-Mayoral, M.L. Jenkins, M.A. Kirk, Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 1: Damage evolution in thin-foils at lower doses, Phil. Mag. 88 (2008) 2851-2880.

DOI: 10.1080/14786430802380469

Google Scholar

[20] M. Hernández-Mayoral, Z. Yao, M.L. Jenkins, M.A. Kirk, Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 2: Damage evolution in thin-foils at higher doses, Phil. Mag. 88 (2008) 2881-2897.

DOI: 10.1080/14786430802380477

Google Scholar

[21] M. Matijasevic, A. Almazouzi, Effect of Cr on the mechanical properties and microstructure of Fe–Cr model alloys after n-irradiation, J. Nucl. Mater. 377 (2008) 147-154.

DOI: 10.1016/j.jnucmat.2008.02.061

Google Scholar

[22] F. Bergner, A. Ulbricht, C. Heintze, Estimation of the solubility limit of Cr in Fe at 300 °C from small-angle neutron scattering in neutron-irradiated Fe–Cr alloys, Scripta Mater. 61 (2009) 1060-1063.

DOI: 10.1016/j.scriptamat.2009.08.028

Google Scholar

[23] C. Heintze, F. Bergner, A. Ulbricht, H. Eckerlebe, The microstructure of neutron-irradiated Fe–Cr alloys: A small-angle neutron scattering study, J. Nucl. Mater. 409 (2011) 106-111.

DOI: 10.1016/j.jnucmat.2010.09.010

Google Scholar

[24] C. Heintze, A. Ulbricht, F. Bergner, H. Eckerlebe, SANS investigation of neutron-irradiated Fe-Cr alloys, J. Phys.: Conf. Ser. 247 (2010) 012035 (8 pages).

DOI: 10.1088/1742-6596/247/1/012035

Google Scholar

[25] G.S. Was, Fundamentals of Radiation Materials Science, first ed., Springer, Berlin, (2007).

Google Scholar

[26] W. Anwand, G. Brauer, M. Butterling, H. -R. Kissener, A. Wagner, Design and Construction of a Slow Positron Beam for Solid and Surface Investigations, (see article in this book).

DOI: 10.4028/www.scientific.net/ddf.331.25

Google Scholar

[27] A.F. Makhov , Electron penetration in Solids, Fiz. Tverdogo Tela, Soviet Physics Solid State 2 (1961) 2172-2175.

Google Scholar

[28] M.J. Puska and R.M. Nieminen, Defect spectroscopy with positrons: a general calculational method, J. Phys. F 13 (1983), 333-346.

DOI: 10.1088/0305-4608/13/2/009

Google Scholar

[29] A. van Veen, H. Schut, J. de Vries, R.A. Hakvoort, M.R. Ijpma, Analysis of positron profiling data by means of VEPFIT,. In: Positron beams for solids and surfaces, P.J. Schultz, G.R. Massoumi, P.J. Simpson editors. Amer. Inst. Phys., NY (1990).

DOI: 10.1063/1.40182

Google Scholar

[30] C. Heintze, C. Recknagel, F. Bergner, M. Hernández-Mayoral, A. Kolitsch, Ion-irradiation-induced damage of steels characterized by means of nanoindentation, Nucl. Instr. Meth. Phys. Res. B 267 (2009) 1505-1508.

DOI: 10.1016/j.nimb.2009.01.122

Google Scholar

[31] W. Anwand, G. Brauer, W. Skorupa, Vacancy-type defects in 6H-SiC caused by N+ and Al+ high fluence co-implantation, Appl. Surf. Sci. 194 (2002) 131-135.

DOI: 10.1016/s0169-4332(02)00112-5

Google Scholar

[32] J.F. Ziegler, SRIM-2003, Nucl. Instr. Meth. Phys. Res. B 219–220 (2004) 1027-1036.

Google Scholar

[33] M. Ando, H. Tanigawa, S. Jitsukawa, T. Sawai, Y. Katoh, A. Kohyama, K. Nakamura, H. Takeuchi, Evaluation of hardening behaviour of ion irradiated reduced activation ferritic/martensitic steels by an ultra-micro-indentation technique, J. Nucl. Mater. 307–311 (2002).

DOI: 10.1016/s0022-3115(02)01250-3

Google Scholar

[34] M. J Puska, P. Lanki, R.M. Nieminen, Positron affinities for elemental metals, J. Phys.: Condens. Matter 1 (1989) 6081-6093.

DOI: 10.1088/0953-8984/1/35/008

Google Scholar

[35] P. Hautojärvi, T. Judin, A. Vehanen, J. Yli-Kauppila, J. Johansson, J. Verdone, P. Moser, Annealing of vacancies in electron-irradiated α-iron, Solid State Communications, 29 (1979) 855-858.

DOI: 10.1016/0038-1098(79)90507-6

Google Scholar