Defect Behaviour in Yttria-Stabilised Zirconia Nanomaterials Studied by Positron Annihilation Techniques

Article Preview

Abstract:

Recent experimental and theoretical investigations on a variety of yttria-stabilised zirconia (YSZ) nanomaterials are reviewed. The investigations were conducted within the frame of a collaboration of three institutions: (i) Charles University in Prague, (ii) Helmholtz Centre Dresden-Rossendorf and (iii) Donetsk Institute for Physics and Engineering of the NAS of Ukraine, Materials studied involved pressure-compacted nanopowders of binary and ternary (with Cr2O3 additive) YSZ and YSZ ceramics obtained by sintering the nanopowders. The nanopowders were prepared by the co-precipitation technique. Positron annihilation spectroscopy including the conventional positron lifetime (LT) and coincidence Doppler broadening (CDB) techniques was employed as the main experimental tool. Slow positron implantation spectroscopy (SPIS) was used in investigation of commercial YSZ single crystals for reference purposes. Extended state-of-art theoretical ab-initio calculations of positron response in the ZrO2 lattice were carried out for various vacancy-like defect configurations. It was suggested by these calculations that none of the oxygen-vacancy related defects are capable to trap positrons. On the other hand, zirconium vacancy was demonstrated by the calculations to be a deep positron trap, even in the case that a hydrogen atom is attached to the vacancy. The measured positron LT data clearly indicated that positrons annihilate in nanopowders predominantly from trapped states at defects of two kinds: (a) the vacancy-like misfit defects concentrated in layers along the grain boundaries and characterised with lifetimes of 0.180 ns, and (b) the larger defects of open volume comparable to clusters of a few vacancies which are situated at intersections of three (or more) grain boundaries (characteristic lifetimes of 0.380 ns). The intensity ratio of LT components corresponding to these two kinds of defects was found to be correlated with the mean particle size. This correlation reconfirms the above interpretation of LT components and, moreover, the measured ratios could be used to estimate changes of the mean particle size with chromia content or sintering temperature. It was shown in this way that chromia addition to the YSZ nanopowder leads to a smaller particle size compared to the binary YSZ. Similarly, grain growth during sintering could be monitored via this intensity ratio. A portion of 10 % of positrons was found to form positronium (Ps) in compacted binary YSZ nanopowders. The observed ortho-Ps lifetimes correspond to Ps pick-off annihilation in cavities of 3 nm size which may be expected to occur between the primary nanoparticles. On the other hand, an addition of chromia at a concentration as low as 0.3 mol.% appeared to be sufficient to suppress Ps formation below the detection limit. Similarly, Ps formation could not be detected in binary YSZ sintered for 1 hour at a temperature of 1000 °C or higher. The former effect indicates an enhanced concentration of Cr cations at the particle surfaces, while the latter one appears to be due to a decrease of cavity concentration induced by sintering. The measured CDB data supported the idea that vacancy-like trapping centres are similar to zirconium vacancies and gave further evidence of a strong segregation of Cr segregation at particle interfaces. SPIS was further involved in a trial experiment on binary YSZ nanopowders and sintered ceramics. This experiment clearly demonstrated that SPIS may reveal valuable information about changes of depth profiles of microstructure during sintering, e.g. a sintering induced diffusion of defects from sample interior to its surface.

You might also be interested in these eBooks

Info:

[1] S.P. Badwal, M.J. Bannister, R.H.J. Hannink (Eds. ), Science and Technology of Zirconia V, Technomic Pub. Co., Lancaster, Pennsylvania, (1993).

Google Scholar

[2] I.A. Yashchishyn, A.M. Korduban, V.V. Trachevskiy, T.E. Konstantinova, I.A. Danilenko, G.K. Volkova, I.K. Nosolev, XPS and ESR spectroscopy of ZrO2-Y2O3-Cr2O3 nanopowders, Functional Materials 17 (2010) 306-310.

DOI: 10.1016/j.apsusc.2010.05.046

Google Scholar

[3] P. Hautojärvi, C. Corbel, Positron spectroscopy of defects in metals and semiconductors, in: A.P. Mills, Jr., and A. Dupasquier (Eds. ), Positron spectroscopy of solids, Proc. Internat. School of Physics «Enrico Fermi», Course CXXV, IOS Press, Amsterdam, 1995, pp.491-532.

Google Scholar

[4] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors: Defect Studies, Springer Series in Solid State Science 127, Springer Verlag, Berlin, Heidelberg, New Jersey, 1999, pp.5-48.

DOI: 10.1007/978-3-662-03893-2_4

Google Scholar

[5] A. Van Veen, H. Schut, E.P. Mijnarends, Depth profiling of subsurface regions, interfaces and thin films, in: P. Coleman (editor), Positron beams and their applications, World Scientific, Singapore, 2000, pp.191-226.

DOI: 10.1142/9789812817754_0006

Google Scholar

[6] J. Cizek, O. Melikhova, J. Kuriplach, I. Prochazka, T.E. Konstantinova, I.A. Danilenko, Defects in yttria-stabilized zirconia: a positron annihilation study, phys. stat. sol (c) 4 (2007) 3847-3850.

DOI: 10.1002/pssc.200675844

Google Scholar

[7] O. Melikhova, J. Kuriplach, J. Cizek, I. Prochazka, G. Brauer, W. Anwand, T.E. Konstantinova, I.A. Danilenko, Positron annihilation in three zirconia polymorphs, phys. stat. sol. (c) 4 (2007) 3831-3834.

DOI: 10.1002/pssc.200675858

Google Scholar

[8] I. Prochazka, J. Cizek, J. Kuriplach, O. Melikhova, T.E. Konstantinova, I.A. Danilenko, Positron Lifetimes in Zirconia-Based Nanomaterials, Acta Phys. Polonica A 113 (2008) 1495-1499.

DOI: 10.12693/aphyspola.113.1495

Google Scholar

[9] J. Cizek, O. Melikhova, J. Kuriplach, I. Prochazka, T.E. Konstantinova, I.A. Danilenko, Sintering of yttria-stabilized zirconia nanopowders studied by positron annihilation spectroscopy, Phys. Status Solidi C 6 (2009) 2582-2584.

DOI: 10.1002/pssc.200982089

Google Scholar

[10] J. Cizek, O. Melikhova, I. Prochazka, J. Kuriplach, R. Kuzel, G. Brauer, W. Anwand, T.E. Konstantinova, I.A. Danilenko, Defect studies of nanocrystalline zirconia powders and sintered ceramics, Phys. Rev. B 81 (2010) art. 024116.

DOI: 10.1103/physrevb.81.024116

Google Scholar

[11] O. Melikhova, J. Kuriplach, J. Cizek, I. Prochazka, G. Brauer, W. Anwand, Investigation of hydrogen interaction with defects in zirconia, Journ. of Phys.: Conf. Ser. 225 (2010) art. 012035.

DOI: 10.1088/1742-6596/225/1/012035

Google Scholar

[12] O. Melikhova, J. Kuriplach, J. Cizek, I. Prochazka, G. Brauer, W. Anwand, Investigation of hydrogen interaction with defects in zirconia, Mater. Res. Soc. Symp. Proc. Vol. 1216 (2010) 1216-W07-10.

DOI: 10.1557/proc-1216-w07-10

Google Scholar

[13] I. Prochazka, J. Cizek, O. Melikhova, J. Kuriplach, T.E. Konstantinova, I.A. Danilenko, Positron annihilation study of yttria-stabilized zirconia nanopowders containing Cr2O3 additive, Journ. of Phys.: Conf. Ser. 265 (2011) art. 012020.

DOI: 10.1088/1742-6596/265/1/012020

Google Scholar

[14] O. Melikhova, J. Cizek, J. Kuriplach, I. Prochazka, W. Anwand, G. Brauer, D. Grambole, Characterization of point defects in yttria stabilized zirconia single crystals, Journ. of Phys.: Conf. Ser. 262 (2011) art. 012038.

DOI: 10.1088/1742-6596/262/1/012038

Google Scholar

[15] O. Melikhova, J. Cizek, I. Prochazka, T.E. Konstantinova, I.A. Danilenko, Defect studies of yttria stabilized zirconia with chromia additive, Phys. Procedia (2011) accepted for publication.

DOI: 10.1016/j.phpro.2012.06.024

Google Scholar

[16] I. Prochazka, J. Cizek, O. Melikhova, W. Anwand, G. Brauer, T.E. Konstantinova, I.A. Danilenko, Effect of Sintering on Defects in Yttria Stabilised Zirconia, Mater. Sci. Forum (2012) accepted for publication.

DOI: 10.4028/www.scientific.net/msf.733.236

Google Scholar

[17] O. Melikhova, J. Cizek, I. Prochazka, J. Kuriplach, T.E. Konstantinova, I.A. Danilenko, Quenching of positronium formation in yttria stabilized zirconia nanopowders modified by addition of chromia, Mater. Sci. Forum (2012).

DOI: 10.4028/www.scientific.net/msf.733.249

Google Scholar

[18] I.A. Yashchishyn, A.M. Korduban, T.E. Konstantinova, I.A. Danilenko, G.K. Volkova, V.A. Glazunova, V.O. Kandyba, Structure and surface characterization of ZrO2-Y2O3-Cr2O3 system, Appl. Surf. Sci. 256 (2010) 7174-7177.

DOI: 10.1016/j.apsusc.2010.05.046

Google Scholar

[19] T. Konstantinova, I. Danilenko, V. Glazunova, G. Volkova, O. Gorban, Mesoscopic phenomena in oxide nanoparticle systems: processes of growth, Journ. Nanopart. Res. 13 (2011) 4015-4023.

DOI: 10.1007/s11051-011-0329-8

Google Scholar

[20] F. Becvar, J. Cizek, L. Lestak, I. Novotny, I. Prochazka, F. Sebesta, A high-resolution BaF2 positron-lifetime spectrometer and experience with its long-term exploitation, Nucl. Instr. Meth. in Phys. Research A 443 (2000) 557-577.

Google Scholar

[21] F. Becvar, J. Cizek, I. Prochazka, J. Janotova, The asset of ultra-fast digitizers for positron-lifetime spectroscopy, Nucl. Instr. Meth. in Phys. Research A 539 (2005) 372-385.

Google Scholar

[22] I. Prochazka, I. Novotny, F. Becvar, Application of Maximum-Likelihood Method to Decomposition of Positron-Lifetime Spectra to Finite Number of Components, Mater. Sci. Forum 255-257 (1997) 772-774.

DOI: 10.4028/www.scientific.net/msf.255-257.772

Google Scholar

[23] J. Cizek, M. Vlcek, I. Prochazka, Digital spectrometer for coincidence measurements of of Doppler broadening of positron annihilation radiation, Nucl. Instr. Meth. in Phys. Research A 623 (2010) 982-994.

Google Scholar

[24] W. Anwand, H. -R. Kissener, G. Brauer, A magnetically guided slow positron beam for defect studies, Acta Phys. Polonica A 88 (1995) 7-11.

DOI: 10.12693/aphyspola.88.7

Google Scholar

[25] A. Van Veen, H. Schut, J. de Vries, R.A. Hakwoort, M.R. Ijpma, Analysis of positron profiling data by means of VEPFIT, in: P.J. Schultz, G.R. Massoumi, P.J. Simpson (Eds. ), Positron Beams for Solids and Surfaces, AIP Conf. Proc., Vol. 218, American Institute of Physics, New York, 1990, pp.171-198.

DOI: 10.1063/1.40182

Google Scholar

[26] F.A. Kröger, Chemistry of Imperfect Crystals, Vol. 2, first ed., North-Holland, Amsterdam, (1974).

Google Scholar

[27] M.J. Puska, R.M. Nieminen, Defect spectroscopy with positrons: a general calculational method, J. Phys. F: Metal Phys. 13 (1983) 333-346.

DOI: 10.1088/0305-4608/13/2/009

Google Scholar

[28] A.P. Seitsonen, M.J. Puska, R.M. Nieminen, Real-space electronic structure calculations: Combination of the finite difference and conjugate gradient methods, Phys. B 51 (1995) 14057-14061.

DOI: 10.1103/physrevb.51.14057

Google Scholar

[29] E. Boroński, R.M. Nieminen, Electron-positron density-functional theory, Phys. Rev. B 34 (1986) 3820-3831.

DOI: 10.1103/physrevb.34.3820

Google Scholar

[30] B. Barbiellini, M.J. Puska, T. Torsti, R.M. Nieminen, Gradient correction for positron states in solids, Phys. Rev. B 51 (1995) 7341-7344.

DOI: 10.1103/physrevb.51.7341

Google Scholar

[31] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15-50.

DOI: 10.1016/0927-0256(96)00008-0

Google Scholar

[32] G. Kresse, J. Hafner, Ab-initio molecular-dynamics for liquid crystals, Phys. Rev. B 47 (1993) 558-561.

DOI: 10.1103/physrevb.47.558

Google Scholar

[33] M. Alatalo, B. Barbielini, M. Hakala, H. Kauppinen, T. Korhonen, M.J. Puska, K. Saarinen, P. Hautojärvi, R.M. Nieminen, Theoretical and experimental study of positron annihilation with core electrons in solids, Phys. Rev. B 54 (1996) 2397-2409.

DOI: 10.1103/physrevb.54.2397

Google Scholar

[34] J. Kuriplach, A.L. Morales, C. Dauwe, D. Seghers, M. Sob, Vacancies and vacancy-oxygen complexes in silicon: Positron annihilation with core electrons, Phys. Rev. B 58 (1998) 10475-10483.

DOI: 10.1103/physrevb.58.10475

Google Scholar

[35] R.I. Grynszpan, S. Saude, L. Mazerolles, B. Brauer, W. Anwand, Positron depth profiling in ion implanted zirconia stabilized with trivalent cations, Radiat. Phys. Chem. 76 (2007) 333-336.

DOI: 10.1016/j.radphyschem.2006.03.061

Google Scholar

[36] K. Ito, Y. Yagi, S. Hirano, M. Miyayama, T. Kudo, A. Kishimoto, Y. Ujihira, Estimation of Pore Size of Porous Materials by Positron Annihilation Lifetime Measurement, J. Ceram. Soc. Japan 107 (1999) 123-127.

DOI: 10.2109/jcersj.107.123

Google Scholar

[37] K. Ito, H. Nakanishi, Y. Ujihira, Extension of the Equation for the Annihilation Lifetime of ortho-Positronium at a Cavity larger than 1 nm in Radius, J. Chem. Phys. B 103 (1999) 4555-4558.

DOI: 10.1021/jp9831841

Google Scholar

[38] Sh. Huang, Y. Dai, H. Zhang, Z. Chen, Chemical Quenching and Inhibition of Positronium in Cr2O3/Al2O3 Catalysts, Wuhan Univ. Journ. Nat. Sci. 16 (2011) 308-312.

DOI: 10.1007/s11859-011-0755-6

Google Scholar

[39] Y. Yagi, S. Hirano, Y. Ujihira, M. Miyayama, Analysis of the sintering process of 2 mol% yttria-doped zirconia by positron annihilation lifetime measurements, J. Mater. Sci. Letts. 18 (1999) 205-207.

DOI: 10.4028/www.scientific.net/msf.255-257.433

Google Scholar