Defect Behaviour in Yttria-Stabilised Zirconia Nanomaterials Studied by Positron Annihilation Techniques

Abstract:

Article Preview

Recent experimental and theoretical investigations on a variety of yttria-stabilised zirconia (YSZ) nanomaterials are reviewed. The investigations were conducted within the frame of a collaboration of three institutions: (i) Charles University in Prague, (ii) Helmholtz Centre Dresden-Rossendorf and (iii) Donetsk Institute for Physics and Engineering of the NAS of Ukraine, Materials studied involved pressure-compacted nanopowders of binary and ternary (with Cr2O3 additive) YSZ and YSZ ceramics obtained by sintering the nanopowders. The nanopowders were prepared by the co-precipitation technique. Positron annihilation spectroscopy including the conventional positron lifetime (LT) and coincidence Doppler broadening (CDB) techniques was employed as the main experimental tool. Slow positron implantation spectroscopy (SPIS) was used in investigation of commercial YSZ single crystals for reference purposes. Extended state-of-art theoretical ab-initio calculations of positron response in the ZrO2 lattice were carried out for various vacancy-like defect configurations. It was suggested by these calculations that none of the oxygen-vacancy related defects are capable to trap positrons. On the other hand, zirconium vacancy was demonstrated by the calculations to be a deep positron trap, even in the case that a hydrogen atom is attached to the vacancy. The measured positron LT data clearly indicated that positrons annihilate in nanopowders predominantly from trapped states at defects of two kinds: (a) the vacancy-like misfit defects concentrated in layers along the grain boundaries and characterised with lifetimes of 0.180 ns, and (b) the larger defects of open volume comparable to clusters of a few vacancies which are situated at intersections of three (or more) grain boundaries (characteristic lifetimes of 0.380 ns). The intensity ratio of LT components corresponding to these two kinds of defects was found to be correlated with the mean particle size. This correlation reconfirms the above interpretation of LT components and, moreover, the measured ratios could be used to estimate changes of the mean particle size with chromia content or sintering temperature. It was shown in this way that chromia addition to the YSZ nanopowder leads to a smaller particle size compared to the binary YSZ. Similarly, grain growth during sintering could be monitored via this intensity ratio. A portion of 10 % of positrons was found to form positronium (Ps) in compacted binary YSZ nanopowders. The observed ortho-Ps lifetimes correspond to Ps pick-off annihilation in cavities of 3 nm size which may be expected to occur between the primary nanoparticles. On the other hand, an addition of chromia at a concentration as low as 0.3 mol.% appeared to be sufficient to suppress Ps formation below the detection limit. Similarly, Ps formation could not be detected in binary YSZ sintered for 1 hour at a temperature of 1000 °C or higher. The former effect indicates an enhanced concentration of Cr cations at the particle surfaces, while the latter one appears to be due to a decrease of cavity concentration induced by sintering. The measured CDB data supported the idea that vacancy-like trapping centres are similar to zirconium vacancies and gave further evidence of a strong segregation of Cr segregation at particle interfaces. SPIS was further involved in a trial experiment on binary YSZ nanopowders and sintered ceramics. This experiment clearly demonstrated that SPIS may reveal valuable information about changes of depth profiles of microstructure during sintering, e.g. a sintering induced diffusion of defects from sample interior to its surface.

Info:

Periodical:

Edited by:

B.N. Ganguly and G. Brauer

Pages:

181-199

Citation:

I. Procházka et al., "Defect Behaviour in Yttria-Stabilised Zirconia Nanomaterials Studied by Positron Annihilation Techniques", Defect and Diffusion Forum, Vol. 331, pp. 181-199, 2012

Online since:

September 2012

Export:

Price:

$38.00

[1] S.P. Badwal, M.J. Bannister, R.H.J. Hannink (Eds. ), Science and Technology of Zirconia V, Technomic Pub. Co., Lancaster, Pennsylvania, (1993).

[2] I.A. Yashchishyn, A.M. Korduban, V.V. Trachevskiy, T.E. Konstantinova, I.A. Danilenko, G.K. Volkova, I.K. Nosolev, XPS and ESR spectroscopy of ZrO2-Y2O3-Cr2O3 nanopowders, Functional Materials 17 (2010) 306-310.

DOI: https://doi.org/10.1016/j.apsusc.2010.05.046

[3] P. Hautojärvi, C. Corbel, Positron spectroscopy of defects in metals and semiconductors, in: A.P. Mills, Jr., and A. Dupasquier (Eds. ), Positron spectroscopy of solids, Proc. Internat. School of Physics «Enrico Fermi», Course CXXV, IOS Press, Amsterdam, 1995, pp.491-532.

[4] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors: Defect Studies, Springer Series in Solid State Science 127, Springer Verlag, Berlin, Heidelberg, New Jersey, 1999, pp.5-48.

DOI: https://doi.org/10.1007/978-3-662-03893-2_4

[5] A. Van Veen, H. Schut, E.P. Mijnarends, Depth profiling of subsurface regions, interfaces and thin films, in: P. Coleman (editor), Positron beams and their applications, World Scientific, Singapore, 2000, pp.191-226.

DOI: https://doi.org/10.1142/9789812817754_0006

[6] J. Cizek, O. Melikhova, J. Kuriplach, I. Prochazka, T.E. Konstantinova, I.A. Danilenko, Defects in yttria-stabilized zirconia: a positron annihilation study, phys. stat. sol (c) 4 (2007) 3847-3850.

DOI: https://doi.org/10.1088/1742-6596/265/1/012020

[7] O. Melikhova, J. Kuriplach, J. Cizek, I. Prochazka, G. Brauer, W. Anwand, T.E. Konstantinova, I.A. Danilenko, Positron annihilation in three zirconia polymorphs, phys. stat. sol. (c) 4 (2007) 3831-3834.

DOI: https://doi.org/10.1002/pssc.200675858

[8] I. Prochazka, J. Cizek, J. Kuriplach, O. Melikhova, T.E. Konstantinova, I.A. Danilenko, Positron Lifetimes in Zirconia-Based Nanomaterials, Acta Phys. Polonica A 113 (2008) 1495-1499.

DOI: https://doi.org/10.12693/aphyspola.113.1495

[9] J. Cizek, O. Melikhova, J. Kuriplach, I. Prochazka, T.E. Konstantinova, I.A. Danilenko, Sintering of yttria-stabilized zirconia nanopowders studied by positron annihilation spectroscopy, Phys. Status Solidi C 6 (2009) 2582-2584.

DOI: https://doi.org/10.1002/pssc.200982089

[10] J. Cizek, O. Melikhova, I. Prochazka, J. Kuriplach, R. Kuzel, G. Brauer, W. Anwand, T.E. Konstantinova, I.A. Danilenko, Defect studies of nanocrystalline zirconia powders and sintered ceramics, Phys. Rev. B 81 (2010) art. 024116.

DOI: https://doi.org/10.1103/physrevb.81.024116

[11] O. Melikhova, J. Kuriplach, J. Cizek, I. Prochazka, G. Brauer, W. Anwand, Investigation of hydrogen interaction with defects in zirconia, Journ. of Phys.: Conf. Ser. 225 (2010) art. 012035.

DOI: https://doi.org/10.1088/1742-6596/225/1/012035

[12] O. Melikhova, J. Kuriplach, J. Cizek, I. Prochazka, G. Brauer, W. Anwand, Investigation of hydrogen interaction with defects in zirconia, Mater. Res. Soc. Symp. Proc. Vol. 1216 (2010) 1216-W07-10.

DOI: https://doi.org/10.1557/proc-1216-w07-10

[13] I. Prochazka, J. Cizek, O. Melikhova, J. Kuriplach, T.E. Konstantinova, I.A. Danilenko, Positron annihilation study of yttria-stabilized zirconia nanopowders containing Cr2O3 additive, Journ. of Phys.: Conf. Ser. 265 (2011) art. 012020.

DOI: https://doi.org/10.1088/1742-6596/265/1/012020

[14] O. Melikhova, J. Cizek, J. Kuriplach, I. Prochazka, W. Anwand, G. Brauer, D. Grambole, Characterization of point defects in yttria stabilized zirconia single crystals, Journ. of Phys.: Conf. Ser. 262 (2011) art. 012038.

DOI: https://doi.org/10.1088/1742-6596/262/1/012038

[15] O. Melikhova, J. Cizek, I. Prochazka, T.E. Konstantinova, I.A. Danilenko, Defect studies of yttria stabilized zirconia with chromia additive, Phys. Procedia (2011) accepted for publication.

DOI: https://doi.org/10.1016/j.phpro.2012.06.024

[16] I. Prochazka, J. Cizek, O. Melikhova, W. Anwand, G. Brauer, T.E. Konstantinova, I.A. Danilenko, Effect of Sintering on Defects in Yttria Stabilised Zirconia, Mater. Sci. Forum (2012) accepted for publication.

DOI: https://doi.org/10.4028/www.scientific.net/msf.733.236

[17] O. Melikhova, J. Cizek, I. Prochazka, J. Kuriplach, T.E. Konstantinova, I.A. Danilenko, Quenching of positronium formation in yttria stabilized zirconia nanopowders modified by addition of chromia, Mater. Sci. Forum (2012).

DOI: https://doi.org/10.4028/www.scientific.net/msf.733.249

[18] I.A. Yashchishyn, A.M. Korduban, T.E. Konstantinova, I.A. Danilenko, G.K. Volkova, V.A. Glazunova, V.O. Kandyba, Structure and surface characterization of ZrO2-Y2O3-Cr2O3 system, Appl. Surf. Sci. 256 (2010) 7174-7177.

DOI: https://doi.org/10.1016/j.apsusc.2010.05.046

[19] T. Konstantinova, I. Danilenko, V. Glazunova, G. Volkova, O. Gorban, Mesoscopic phenomena in oxide nanoparticle systems: processes of growth, Journ. Nanopart. Res. 13 (2011) 4015-4023.

DOI: https://doi.org/10.1007/s11051-011-0329-8

[20] F. Becvar, J. Cizek, L. Lestak, I. Novotny, I. Prochazka, F. Sebesta, A high-resolution BaF2 positron-lifetime spectrometer and experience with its long-term exploitation, Nucl. Instr. Meth. in Phys. Research A 443 (2000) 557-577.

DOI: https://doi.org/10.1016/s0168-9002(99)01156-0

[21] F. Becvar, J. Cizek, I. Prochazka, J. Janotova, The asset of ultra-fast digitizers for positron-lifetime spectroscopy, Nucl. Instr. Meth. in Phys. Research A 539 (2005) 372-385.

DOI: https://doi.org/10.1016/j.nima.2004.09.031

[22] I. Prochazka, I. Novotny, F. Becvar, Application of Maximum-Likelihood Method to Decomposition of Positron-Lifetime Spectra to Finite Number of Components, Mater. Sci. Forum 255-257 (1997) 772-774.

DOI: https://doi.org/10.4028/www.scientific.net/msf.255-257.772

[23] J. Cizek, M. Vlcek, I. Prochazka, Digital spectrometer for coincidence measurements of of Doppler broadening of positron annihilation radiation, Nucl. Instr. Meth. in Phys. Research A 623 (2010) 982-994.

DOI: https://doi.org/10.1016/j.nima.2010.07.046

[24] W. Anwand, H. -R. Kissener, G. Brauer, A magnetically guided slow positron beam for defect studies, Acta Phys. Polonica A 88 (1995) 7-11.

DOI: https://doi.org/10.12693/aphyspola.88.7

[25] A. Van Veen, H. Schut, J. de Vries, R.A. Hakwoort, M.R. Ijpma, Analysis of positron profiling data by means of VEPFIT, in: P.J. Schultz, G.R. Massoumi, P.J. Simpson (Eds. ), Positron Beams for Solids and Surfaces, AIP Conf. Proc., Vol. 218, American Institute of Physics, New York, 1990, pp.171-198.

DOI: https://doi.org/10.1063/1.40182

[26] F.A. Kröger, Chemistry of Imperfect Crystals, Vol. 2, first ed., North-Holland, Amsterdam, (1974).

[27] M.J. Puska, R.M. Nieminen, Defect spectroscopy with positrons: a general calculational method, J. Phys. F: Metal Phys. 13 (1983) 333-346.

DOI: https://doi.org/10.1088/0305-4608/13/2/009

[28] A.P. Seitsonen, M.J. Puska, R.M. Nieminen, Real-space electronic structure calculations: Combination of the finite difference and conjugate gradient methods, Phys. B 51 (1995) 14057-14061.

DOI: https://doi.org/10.1103/physrevb.51.14057

[29] E. Boroński, R.M. Nieminen, Electron-positron density-functional theory, Phys. Rev. B 34 (1986) 3820-3831.

DOI: https://doi.org/10.1103/physrevb.34.3820

[30] B. Barbiellini, M.J. Puska, T. Torsti, R.M. Nieminen, Gradient correction for positron states in solids, Phys. Rev. B 51 (1995) 7341-7344.

DOI: https://doi.org/10.1103/physrevb.51.7341

[31] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15-50.

DOI: https://doi.org/10.1016/0927-0256(96)00008-0

[32] G. Kresse, J. Hafner, Ab-initio molecular-dynamics for liquid crystals, Phys. Rev. B 47 (1993) 558-561.

[33] M. Alatalo, B. Barbielini, M. Hakala, H. Kauppinen, T. Korhonen, M.J. Puska, K. Saarinen, P. Hautojärvi, R.M. Nieminen, Theoretical and experimental study of positron annihilation with core electrons in solids, Phys. Rev. B 54 (1996) 2397-2409.

DOI: https://doi.org/10.1103/physrevb.54.2397

[34] J. Kuriplach, A.L. Morales, C. Dauwe, D. Seghers, M. Sob, Vacancies and vacancy-oxygen complexes in silicon: Positron annihilation with core electrons, Phys. Rev. B 58 (1998) 10475-10483.

DOI: https://doi.org/10.1103/physrevb.58.10475

[35] R.I. Grynszpan, S. Saude, L. Mazerolles, B. Brauer, W. Anwand, Positron depth profiling in ion implanted zirconia stabilized with trivalent cations, Radiat. Phys. Chem. 76 (2007) 333-336.

DOI: https://doi.org/10.1016/j.radphyschem.2006.03.061

[36] K. Ito, Y. Yagi, S. Hirano, M. Miyayama, T. Kudo, A. Kishimoto, Y. Ujihira, Estimation of Pore Size of Porous Materials by Positron Annihilation Lifetime Measurement, J. Ceram. Soc. Japan 107 (1999) 123-127.

DOI: https://doi.org/10.2109/jcersj.107.123

[37] K. Ito, H. Nakanishi, Y. Ujihira, Extension of the Equation for the Annihilation Lifetime of ortho-Positronium at a Cavity larger than 1 nm in Radius, J. Chem. Phys. B 103 (1999) 4555-4558.

DOI: https://doi.org/10.1021/jp9831841

[38] Sh. Huang, Y. Dai, H. Zhang, Z. Chen, Chemical Quenching and Inhibition of Positronium in Cr2O3/Al2O3 Catalysts, Wuhan Univ. Journ. Nat. Sci. 16 (2011) 308-312.

DOI: https://doi.org/10.1007/s11859-011-0755-6

[39] Y. Yagi, S. Hirano, Y. Ujihira, M. Miyayama, Analysis of the sintering process of 2 mol% yttria-doped zirconia by positron annihilation lifetime measurements, J. Mater. Sci. Letts. 18 (1999) 205-207.