[1]
G.R. Odette, M.J. Alinger, B.D. Wirth, Recent developments in irradiation resistant steels, Annu. Rev. Mater. Res. 38 (2008) 471-503.
DOI: 10.1146/annurev.matsci.38.060407.130315
Google Scholar
[2]
L.K. Mansur, Theory and experimental background on dimensional changes in irradiated alloys, J. Nucl. Mater. 216 (1994) 97-123.
DOI: 10.1016/0022-3115(94)90009-4
Google Scholar
[3]
J.D. Hunn, E.H. Lee, T.S. Byun, L.K. Mansur, Effects of helium on radiation-induced defect microstructure in austenitic stainless steel, J. Nucl. Mater. 280 (2000).
DOI: 10.1016/s0022-3115(00)00038-6
Google Scholar
[4]
I. -S. Kim, J.D. Hunn, N. Nashimoto, D.L. Larson, P.J. Maziasz, K. Miyahara, E.H. Lee, Defect and void evolution in oxide dispersion strengthened ferritic steels under 3. 2 MeV Fe+ ion irradiation with simultaneous helium injection, J. Nucl. Mater. 280 (2000).
DOI: 10.1016/s0022-3115(00)00066-0
Google Scholar
[5]
T. Yamamoto, G.R. Odette, P. Miao, D.T. Hoelzer, J. Bentley, N. Hashimoto, The transport and fate of helium in nanostructured ferritic alloys at fusion relevant He/dpa ratios and dpa rates, H. Tanigawa, R.J. Kurtz, J. Nucl. Mater. 367-370 (2007).
DOI: 10.1016/j.jnucmat.2007.03.047
Google Scholar
[6]
J. Chen, P. Jung, W. Hoffelner, H. Ullmaier, Dislocation loops and bubbles in oxide dispersion strengthened ferritic steel after helium implantation under stress, Acta Materialia 56 (2008) 250-258.
DOI: 10.1016/j.actamat.2007.09.016
Google Scholar
[7]
H. Ohkubo, Z. Tang, Y. Nagai, M. Hasegawa, T. Tawara, M. Kiritani, Positron annihilation study of vacancy-type defects in high-speed deformed Ni, Cu and Fe, Mat. Sci. Engin. A350 (2003) 95-101.
DOI: 10.1016/s0921-5093(02)00705-0
Google Scholar
[8]
L.C. Damonte, M.A. Taylor, J. Desimoni, J. Runco, PALS study on the defect structure of yttria-stabilized zirconia, Radiation Physics and Chemisty 76 (2007) 248-251.
DOI: 10.1016/j.radphyschem.2006.03.046
Google Scholar
[9]
L.C. Damonte, M.C. Caracoche, D. Lamas, Positron characterization of metastable phases in yttria stabilized zirconia, phys. stat. sol. 10 (2007) 3843-3846.
DOI: 10.1002/pssc.200675841
Google Scholar
[10]
J. Xu, C.T. Liu, M.K. Miller, H. Chen, Nanocluster-associated vacancies in nanocluster-strengthened ferritic steel as seen via positron-lifetime spectroscopy, Phys. Rev. B 79 (2009) 020204-1-4.
DOI: 10.1103/physrevb.79.020204
Google Scholar
[11]
Y. Ortega, V. de Castro, M.A. Munoz, T. Leguey, R. Pareja, Positron annihilation characteristics of ODS and non-ODS EUROFER isochronally annealed, J. Nucl. Mater. 376 (2008) 222-228.
DOI: 10.1016/j.jnucmat.2008.03.005
Google Scholar
[12]
R. Rajaraman, G. Amarendra, C.S. Sundar, Defect evolution in steels: Insights from positron studies, phys. stat. sol. 6 (2009) 2285-2290.
DOI: 10.1002/pssc.200982112
Google Scholar
[13]
V. Krsjak, Z. Szaraz, P. Hähner, Positron annihilation lifetime study of oxide dispersion strengthened steels, J. Nucl. Mater. (2011) http: /dx. doi. org/10. 1016/j. jnucmat. 2011. 11. 058.
DOI: 10.1016/j.jnucmat.2011.11.058
Google Scholar
[14]
H. Kishimoto, K. Yutani, R. Kasada, A. Kimura, Helium cavity formation research on oxide dispersed strengthening ferritic steels utilizing dual-ion irradiation facility, Fusion Engineering and Design 81 (2006) 1045-1049.
DOI: 10.1016/j.fusengdes.2005.09.049
Google Scholar
[15]
C. -L. Chen, A. Richter, R. Kögler, G. Talut, Dual beam irradiation of nanostructured FeCrAl oxide dispersion strengthened steel, J. Nucl. Mater. 412 (2011) 350-358.
DOI: 10.1016/j.jnucmat.2011.03.041
Google Scholar
[16]
A. Richter, C. -L. Chen, A. Mücklich, R. Kögler, Irradiation damage in dual beam irradiated nanostructured FeCrAl oxide dispersion strengthened steel, Mater. Res. Soc. Symp. Proc. Vol. 1298 (2011) 141-146.
DOI: 10.1557/opl.2011.47
Google Scholar
[17]
R. Kögler, W. Anwand, A. Richter, M. Butterling, X. Ou, A. Wagner, C. -L. Chen, Nanoc acvity formation and hardness increase by dual ion beam irradiation of oxide disperesed strengthended FeCrAl alloy, J. Nucl. Mater. 427 (2012) 133-139.
DOI: 10.1016/j.jnucmat.2012.04.029
Google Scholar
[18]
W. Anwand, H. -R. Kissener, G. Brauer, Acta Phys. Polonica A 88 (1995) 7-11. W. Anwand et al., see this issue.
DOI: 10.12693/aphyspola.88.7
Google Scholar
[19]
P. Asoka-Kumar, M. Alatalo, V.J. Ghosh, A.C. Kruseman, B. Nielsen, K.G. Lynn, Increased elemental specifity of positron annihilation spectra, Phys. Rev. Lett. 77 (1996) 2097-2101.
DOI: 10.1103/physrevlett.77.2097
Google Scholar
[20]
A. Vehanen, P. Hautojarvi, J. Johansson, J. Yli-Kauppila, P. Moser, Vacancies and carbon impurities in α- iron: Electron irradiation, PRB 25 (1982) 762-780.
DOI: 10.1103/physrevb.25.762
Google Scholar
[21]
M.J. Puska, P. Lanki, R.M. Nieminen, Positron affinities for elemental metals, J. Phys., Condens. Matter 1 (1989) 6081-6093.
DOI: 10.1088/0953-8984/1/35/008
Google Scholar
[22]
A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, M.W. Chen, Atomic structure of nanoclusters in oxide-dispereion-strengthened steels, Nature Materials Letters 10 (2011) 922-926.
DOI: 10.1038/nmat3150
Google Scholar
[23]
P. Hosemann, D. Kiener, Y. Wang, S.A. Maloy, Issues to consider using nanoindentation on shallow ion beam irradiated materials, J. Nucl. Mater. 425 (2011) 136-139.
DOI: 10.1016/j.jnucmat.2011.11.070
Google Scholar
[24]
H. Bückle, The Sience of Hardness Testing and its Research Applications, ASM, Metals Park, Ohio, ed. by J.H. Westbrook and J. Conrad (1973).
Google Scholar
[25]
A. van Veen, H. Schut, J. de Vries, R.A. Haakvoort, M.R. Ijpma, Positron beams for solids and surfaces, in: P.J. Schultz, G.R. Massoumi, P.J. Simpson (Eds. ), Proceedings of the AIP Conference, Vol. 218 (1990) 171-177.
Google Scholar