Investigation of Dual-Beam-Implanted Oxide-Dispersed-Strengthened FeCrAl Alloy by Positron Annihilation Spectroscopy

Article Preview

Abstract:

Oxide-dispersion-strengthened (ODS) FeCrAl steel is a class with promising materials to be applied for future nuclear applications. However, radiation damage, especially the formation of vacancy clusters or gas-filled bubbles, may result in hardness increase and the loss of ductility. Positron annihilation spectroscopy (PAS) is demonstrated to be a very useful and non-destructive analysis method to detect and to determine open volume defects of sub-nm size in ODS alloy. Synchronized dual beam implantation of Fe and He ions is performed to simulate the radiation damage caused by (n, α) reactions and to avoid induced activation. For room temperature implantation, i.e. without significant point defect recombination, the differences in the defect formation are shown by comparison between irradiation of ODS alloy and pure Fe bulk. The open volume defects created in ODS alloy are vacancy clusters closely connected with dispersed Y oxide nanoparticles. Their profiles are in reasonable qualitative agreement with the hardness profiles, indicating a relationship between sub-nm vacancy clusters or He bubbles and the hardness of the material. In heat-treated ODS alloy, containing larger vacancy clusters, the radiation induced hardness increase is more distinctive than for as-received ODS alloy. For irradiation at a moderately enhanced temperature of 300°C open volume defects are drastically reduced. The few remaining defects are vacancy clusters of the same type as in as-received ODS alloy. Close to the surface the open volume defects completely disappear. These results are in agreement with the hardness measurements showing little hardness increase in this case. The suitability of ODS-based materials for nuclear applications was verified.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-163

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.R. Odette, M.J. Alinger, B.D. Wirth, Recent developments in irradiation resistant steels, Annu. Rev. Mater. Res. 38 (2008) 471-503.

DOI: 10.1146/annurev.matsci.38.060407.130315

Google Scholar

[2] L.K. Mansur, Theory and experimental background on dimensional changes in irradiated alloys, J. Nucl. Mater. 216 (1994) 97-123.

DOI: 10.1016/0022-3115(94)90009-4

Google Scholar

[3] J.D. Hunn, E.H. Lee, T.S. Byun, L.K. Mansur, Effects of helium on radiation-induced defect microstructure in austenitic stainless steel, J. Nucl. Mater. 280 (2000).

DOI: 10.1016/s0022-3115(00)00038-6

Google Scholar

[4] I. -S. Kim, J.D. Hunn, N. Nashimoto, D.L. Larson, P.J. Maziasz, K. Miyahara, E.H. Lee, Defect and void evolution in oxide dispersion strengthened ferritic steels under 3. 2 MeV Fe+ ion irradiation with simultaneous helium injection, J. Nucl. Mater. 280 (2000).

DOI: 10.1016/s0022-3115(00)00066-0

Google Scholar

[5] T. Yamamoto, G.R. Odette, P. Miao, D.T. Hoelzer, J. Bentley, N. Hashimoto, The transport and fate of helium in nanostructured ferritic alloys at fusion relevant He/dpa ratios and dpa rates, H. Tanigawa, R.J. Kurtz, J. Nucl. Mater. 367-370 (2007).

DOI: 10.1016/j.jnucmat.2007.03.047

Google Scholar

[6] J. Chen, P. Jung, W. Hoffelner, H. Ullmaier, Dislocation loops and bubbles in oxide dispersion strengthened ferritic steel after helium implantation under stress, Acta Materialia 56 (2008) 250-258.

DOI: 10.1016/j.actamat.2007.09.016

Google Scholar

[7] H. Ohkubo, Z. Tang, Y. Nagai, M. Hasegawa, T. Tawara, M. Kiritani, Positron annihilation study of vacancy-type defects in high-speed deformed Ni, Cu and Fe, Mat. Sci. Engin. A350 (2003) 95-101.

DOI: 10.1016/s0921-5093(02)00705-0

Google Scholar

[8] L.C. Damonte, M.A. Taylor, J. Desimoni, J. Runco, PALS study on the defect structure of yttria-stabilized zirconia, Radiation Physics and Chemisty 76 (2007) 248-251.

DOI: 10.1016/j.radphyschem.2006.03.046

Google Scholar

[9] L.C. Damonte, M.C. Caracoche, D. Lamas, Positron characterization of metastable phases in yttria stabilized zirconia, phys. stat. sol. 10 (2007) 3843-3846.

DOI: 10.1002/pssc.200675841

Google Scholar

[10] J. Xu, C.T. Liu, M.K. Miller, H. Chen, Nanocluster-associated vacancies in nanocluster-strengthened ferritic steel as seen via positron-lifetime spectroscopy, Phys. Rev. B 79 (2009) 020204-1-4.

DOI: 10.1103/physrevb.79.020204

Google Scholar

[11] Y. Ortega, V. de Castro, M.A. Munoz, T. Leguey, R. Pareja, Positron annihilation characteristics of ODS and non-ODS EUROFER isochronally annealed, J. Nucl. Mater. 376 (2008) 222-228.

DOI: 10.1016/j.jnucmat.2008.03.005

Google Scholar

[12] R. Rajaraman, G. Amarendra, C.S. Sundar, Defect evolution in steels: Insights from positron studies, phys. stat. sol. 6 (2009) 2285-2290.

DOI: 10.1002/pssc.200982112

Google Scholar

[13] V. Krsjak, Z. Szaraz, P. Hähner, Positron annihilation lifetime study of oxide dispersion strengthened steels, J. Nucl. Mater. (2011) http: /dx. doi. org/10. 1016/j. jnucmat. 2011. 11. 058.

DOI: 10.1016/j.jnucmat.2011.11.058

Google Scholar

[14] H. Kishimoto, K. Yutani, R. Kasada, A. Kimura, Helium cavity formation research on oxide dispersed strengthening ferritic steels utilizing dual-ion irradiation facility, Fusion Engineering and Design 81 (2006) 1045-1049.

DOI: 10.1016/j.fusengdes.2005.09.049

Google Scholar

[15] C. -L. Chen, A. Richter, R. Kögler, G. Talut, Dual beam irradiation of nanostructured FeCrAl oxide dispersion strengthened steel, J. Nucl. Mater. 412 (2011) 350-358.

DOI: 10.1016/j.jnucmat.2011.03.041

Google Scholar

[16] A. Richter, C. -L. Chen, A. Mücklich, R. Kögler, Irradiation damage in dual beam irradiated nanostructured FeCrAl oxide dispersion strengthened steel, Mater. Res. Soc. Symp. Proc. Vol. 1298 (2011) 141-146.

DOI: 10.1557/opl.2011.47

Google Scholar

[17] R. Kögler, W. Anwand, A. Richter, M. Butterling, X. Ou, A. Wagner, C. -L. Chen, Nanoc acvity formation and hardness increase by dual ion beam irradiation of oxide disperesed strengthended FeCrAl alloy, J. Nucl. Mater. 427 (2012) 133-139.

DOI: 10.1016/j.jnucmat.2012.04.029

Google Scholar

[18] W. Anwand, H. -R. Kissener, G. Brauer, Acta Phys. Polonica A 88 (1995) 7-11. W. Anwand et al., see this issue.

DOI: 10.12693/aphyspola.88.7

Google Scholar

[19] P. Asoka-Kumar, M. Alatalo, V.J. Ghosh, A.C. Kruseman, B. Nielsen, K.G. Lynn, Increased elemental specifity of positron annihilation spectra, Phys. Rev. Lett. 77 (1996) 2097-2101.

DOI: 10.1103/physrevlett.77.2097

Google Scholar

[20] A. Vehanen, P. Hautojarvi, J. Johansson, J. Yli-Kauppila, P. Moser, Vacancies and carbon impurities in α- iron: Electron irradiation, PRB 25 (1982) 762-780.

DOI: 10.1103/physrevb.25.762

Google Scholar

[21] M.J. Puska, P. Lanki, R.M. Nieminen, Positron affinities for elemental metals, J. Phys., Condens. Matter 1 (1989) 6081-6093.

DOI: 10.1088/0953-8984/1/35/008

Google Scholar

[22] A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, M.W. Chen, Atomic structure of nanoclusters in oxide-dispereion-strengthened steels, Nature Materials Letters 10 (2011) 922-926.

DOI: 10.1038/nmat3150

Google Scholar

[23] P. Hosemann, D. Kiener, Y. Wang, S.A. Maloy, Issues to consider using nanoindentation on shallow ion beam irradiated materials, J. Nucl. Mater. 425 (2011) 136-139.

DOI: 10.1016/j.jnucmat.2011.11.070

Google Scholar

[24] H. Bückle, The Sience of Hardness Testing and its Research Applications, ASM, Metals Park, Ohio, ed. by J.H. Westbrook and J. Conrad (1973).

Google Scholar

[25] A. van Veen, H. Schut, J. de Vries, R.A. Haakvoort, M.R. Ijpma, Positron beams for solids and surfaces, in: P.J. Schultz, G.R. Massoumi, P.J. Simpson (Eds. ), Proceedings of the AIP Conference, Vol. 218 (1990) 171-177.

Google Scholar