[1]
R. Waser (Ed. ), Nanotechnology, Vol. 3, Wiley-VCH, Weinheim, (2008).
Google Scholar
[2]
R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges, Adv. Mater. 21 (2009) 2632-2655.
DOI: 10.1002/adma.200900375
Google Scholar
[3]
M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage, Nat. Mater. (2007) 824-832.
DOI: 10.1038/nmat2009
Google Scholar
[4]
C. Schindler, M. Weides, M.N. Kozicki, R. Waser, Low current resistive switching in Cu–SiO2 cells, Appl. Phys. Lett 92 (2008) art. 122910 (3 pp).
DOI: 10.1063/1.2903707
Google Scholar
[5]
B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition, J. Appl. Phys. 98 (2005).
DOI: 10.1063/1.2001146
Google Scholar
[6]
D.C. Kim, S. Seo, S.E. Ahn, D. -S. Suh, M.J. Lee, B. -H. Park, I.K. Yoo, I.G. Baek, H. -J. Kim, E.K. Yim, J.E. Lee, S.O. Park, H.S. Kim, U. -I. Chung, J.T. Moon, B.I. Ryu, Electrical observations of filamentary conductions for the resistive memory switching in NiO films, Appl. Phys. Lett. 88 (2006).
DOI: 10.1063/1.2204649
Google Scholar
[7]
K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3, Nat. Mater. 5 (2006) 312-320.
DOI: 10.1038/nmat1614
Google Scholar
[8]
A.S. Hamid, A. Uedono, T. Chikyow, K. Uwe, K. Mochizuki, S. Kawaminami, Vacancy- type defects and electronic structure of perovskite-oxide SrTiO3 from positron annihilation, Phys. Stat. Sol. A 203 (2006) 300-305.
DOI: 10.1002/pssa.200521209
Google Scholar
[9]
R. Ferragut, A. Dupaquier, S. Brivio, R. Bertacco, W. Egger, Study of defects in an electroresistive Au/La2/3Sr1/3MnO3/SrTiO3(001) heterostructure by positron annihilation, J. Appl. Phys. 110 (2011) art. 053511 (6 pp).
DOI: 10.1063/1.3631825
Google Scholar
[10]
S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: A spin-based electronics vision for the future, Science 294 (2001) 1488-1495.
DOI: 10.1126/science.1065389
Google Scholar
[11]
C. Chappert, A. Fert, F.N. van Dau, The emergence of spin electronics in data storage, Nature Mater. 6 (2007) 813-832.
DOI: 10.1038/nmat2024
Google Scholar
[12]
K. Sato, L. Bergqvist, J. Kudrnovsky, P.H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V.A. Dinh, T. Fukushima, H. Kizaki, R. Zeller, First-principles theory of dilute magnetic semiconductors, Rev. Mod. Phys. 82 (2010).
DOI: 10.1103/revmodphys.82.1633
Google Scholar
[13]
J. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater. 159 (1996) L1-L7.
DOI: 10.1016/0304-8853(96)00062-5
Google Scholar
[14]
L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B 54 (1996) 9353-9358.
DOI: 10.1103/physrevb.54.9353
Google Scholar
[15]
F.J. Albert, N.C. Emley, E.B. Myers, D.C. Ralph, R.A. Buhrman, Quantitative study of magnetization reversal by spin-polarized current in magnetic multilayer nanopillars, Phys. Rev. Lett. 89 (2002) art. 226802 (4 pp).
DOI: 10.1103/physrevlett.89.226802
Google Scholar
[16]
D. Chiba, Y. Sato, T. Kita, F. Matsukura, H. Ohno, Current-driven magnetization reversal in a ferromagnetic semiconductor (Ga, Mn)As/GaAs/(Ga, Mn)As tunnel junction, Phys. Rev. Lett. 93 (2004) art. 216602 (4 pp).
DOI: 10.1103/physrevlett.96.096601
Google Scholar
[17]
J. Wunderlich, A.C. Irvine, J. Zemen, V. Holy, A.W. Rushforth, E. De Deranieri, U. Rana, K. Vyborny, J. Sinova, C.T. Foxon, R.P. Campion, D.A. Williams, B.L. Gallagher, T. Jungwirth, Local control of magneto-crystalline anisotropy in (Ga, Mn)As microdevices: Demonstration in current-induced switching, Phys. Rev. B 76 (2007).
DOI: 10.1103/physrevb.76.054424
Google Scholar
[18]
H. Ohno, T. Dietl, Spin-transfer physics and the model of ferromagnetism in (Ga, Mn)As, J. Magn. Magn. Mater. 320 (2008) 1293-1299.
DOI: 10.1016/j.jmmm.2007.12.016
Google Scholar
[19]
S. Datta, B. Das, Electronic analog of the electro-optic modulator, Appl. Phys. Lett. 56 (1990) 665-667.
DOI: 10.1063/1.102730
Google Scholar
[20]
H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs, Appl. Phys. Lett. 69 (1996) 363-365.
DOI: 10.1063/1.118061
Google Scholar
[21]
T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science 287 (2000) 1019-1022.
DOI: 10.1126/science.287.5455.1019
Google Scholar
[22]
T. Jungwirth, K.Y. Wang, J. Masek, K.W. Edmonds, J. Konig, J. Sinova, M. Pollini, N.A. Goncharuk, A.H. MacDonald, M. Sawicki, A.W. Rushforth, R.P. Campion, L.X. Zhao, C. T. Foxon, and B. L. Gallagher, Prospects for high temperature ferromagnetism in (Ga, Mn)As semiconductors, Phys. Rev. B 72 (2005).
DOI: 10.1103/physrevb.72.165204
Google Scholar
[23]
M. Wang, R.P. Campion, A.W. Rushforth, K.W. Edmonds, C.T. Foxon, B.L. Gallagher, Achieving high Curie temperature in (Ga, Mn)As, Appl. Phys. Lett. 93 (2008) art. 132103 (3 pp).
DOI: 10.1063/1.2992200
Google Scholar
[24]
T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides, Nat. Mater. 9 (2010) 965-974.
DOI: 10.1038/nmat2898
Google Scholar
[25]
S. Ohya, K. Takata, M. Tanaka, Nearly non-magnetic valence band of the ferromagnetic semiconductor GaMnAs, Nature Phys. 7 (2011) 342-347.
DOI: 10.1038/nphys1905
Google Scholar
[26]
K. Sato, H. Katayama-Yoshida, First principles materials design for semiconductor spintronics, Semicond. Sci. Technol. 17 (2002) 367-376.
DOI: 10.1088/0268-1242/17/4/309
Google Scholar
[27]
J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nature Mater. 4 (2005) 173-179.
DOI: 10.1038/nmat1310
Google Scholar
[28]
S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, L.A. Boatner, Wide band gap ferromagnetic semiconductors and oxides, J. Appl. Phys. 93 (2003) 1-13.
DOI: 10.1063/1.1517164
Google Scholar
[29]
C. Liu, F. Yun, H. Morkoc, Ferromagnetism of ZnO and GaN: A review, J. Mater. Sci. – Mater. El. 16 (2005) 555-597.
Google Scholar
[30]
A. Ney, M. Opel, T.C. Kaspar, V. Ney, S. Ye, K. Ollefs, T. Kammermeier, S. Bauer, K. -W. Nielsen, S.T.B. Goennenwein, M.H. Engelhard, S. Zhou, K. Potzger, J. Simon, W. Mader, S.M. Heald, J.C. Cezar, F. Wilhelm, A. Rogalev, R. Gross, S.A. Chambers, Advanced spectroscopic synchrotron techniques to unravel the intrinsic properties of dilute magnetic oxides: the case of Co: ZnO, New J. Phys. 12 (2010).
DOI: 10.1088/1367-2630/12/1/013020
Google Scholar
[31]
D.W. Abraham, M.M. Frank, S. Guha, Absence of magnetism in hafnium oxide films, Appl. Phys. Lett. 87 (2005) art. 252502 (3 pp).
DOI: 10.1063/1.2146057
Google Scholar
[32]
M.A. Garcia, E.F. Pinel, J. de la Venta, A. Quesada, V. Bouzas, J.F. Fernandez, J.J. Romero, M.S.M. Gonzalez, J.L. Costa-Kramer, Sources of experimental errors in the observation of nanoscale magnetism, J. Appl. Phys. 105 (2009).
DOI: 10.1063/1.3060808
Google Scholar
[33]
J.M.D. Coey, P. Stamenov, R.D. Gunning, M. Venkatesan, K. Paul, Ferromagnetism in defect-ridden oxides and related materials, New J. Phys. 12 (2010) art. 053025 (14 pp).
DOI: 10.1088/1367-2630/12/5/053025
Google Scholar
[34]
K. Potzger, S. Zhou, Non-DMS related ferromagnetism in transition metal doped zinc oxide, phys. stat. sol. (b) 246 (2009) 1147-1167.
DOI: 10.1002/pssb.200844272
Google Scholar
[35]
S. Zhou, M. Berndt, D. Burger, V. Heera, K. Potzger, G. Abrasonis, G. Radnoczi, G.J. Kovacs, A. Kolitsch, M. Helm, J. Fassbender, W. Moeller, H. Schmidt, Spin-dependent transport in nanocomposite C: Co films, Act. Mater. 57 (2009) 4758-4764.
DOI: 10.1016/j.actamat.2009.06.035
Google Scholar
[36]
G. Bouzerar, T. Ziman, J. Kudrnovsky, Compensation, interstitial defects, and ferromagnetism in diluted ferromagnetic semiconductors, Phys. Rev. B 72 (2005) art. 125207 (5 pp).
DOI: 10.1103/physrevb.72.125207
Google Scholar
[37]
S.B. Ogale, Dilute doping, defects, and ferromagnetism in metal oxide systems, Adv. Mater. 22 (2010) 3125-3155.
DOI: 10.1002/adma.200903891
Google Scholar
[38]
R.K. Singhal, A. Samariya, S. Kumar, Y.T. Xing, D.C. Jain, S.N. Dolia, U.P. Deshpande, T. Shripathi, E.B. Saitovitch, Study of defect-induced ferromagnetism in hydrogenated anatase TiO2: Co, J. Appl. Phys. 107 (2010) art. 113916 (7 pp).
DOI: 10.1063/1.3431396
Google Scholar
[39]
S. Zhou, E. Cizmar, K. Potzger, M. Krause, G. Talut, M. Helm, J. Fassbender, S.A. Zvyagin, J. Wosnitza, H. Schmidt, Origin of magnetic moments in defective TiO2 single crystals, Phys. Rev. B 79 (2009) art. 113201 (4 pp).
DOI: 10.1103/physrevb.79.113201
Google Scholar
[40]
Y. Yamada, K. Ueno, T. Fukumura, H.T. Yuan, H. Shimotani, Y. Iwasa, L. Gu, S. Tsukimoto, Y. Ikuhara, M. Kawasaki, Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide, Science (2011) 1065-1067.
DOI: 10.1126/science.1202152
Google Scholar
[41]
G. Ciatto, A. Di Trolio, E. Fonda, P. Alippi, A.M. Testa, A.A. Bonapasta, Evidence of Cobalt-vacancy complexes in Zn1-xCoxO dilute magnetic semiconductors, Phys. Rev. Lett. 107 (2011) art. 127206 (5 pp).
DOI: 10.1103/physrevlett.107.127206
Google Scholar
[42]
K.E.H.M. Hanssen, P.E. Mijnarends, L.P.L.M. Rabou, K.H.J. Buschow, Positron-annihilation study of the half-metallic ferromagnet NiMnSb: Experiment, Phys. Rev. B. 42 (1990) 1533-1540.
DOI: 10.1103/physrevb.42.1533
Google Scholar
[43]
E.A. Livesay, R.N. West, S.B. Dugdale, G. Santi, T. Jarlborg, Fermi surface of the colossal magnetoresistance perovskite La0. 7Sr0. 3MnO3, J. Phys.: Condens. Matter 11 (1999) L279-L285.
DOI: 10.1088/0953-8984/11/25/104
Google Scholar
[44]
F. Tuomisto, K. Pennanen, K. Saarinen, J. Sadowski, Ga sublattice defects in (Ga, Mn)As: Thermodynamical and kinetic trends, Phys. Rev. Lett. 93 (2004) art. 055505 (4 pp).
DOI: 10.1103/physrevlett.93.055505
Google Scholar
[45]
A. Janotti, C.G. Van de Walle, Native point defects in ZnO, Phys. Rev. B 76 (2007) art. 165202 (22 pp).
DOI: 10.1103/physrevb.76.165202
Google Scholar
[46]
F. Tuomisto, V. Ranki, K. Saarinen, D.C. Look, Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO, Phys. Rev. Lett. 91 (2003) art. 205502 (4 pp).
DOI: 10.1103/physrevlett.91.205502
Google Scholar
[47]
A. Janotti, C.G. Van de Walle, Hydrogen multicentre bonds, Nat. Mater. 6 (2007) 44-47.
Google Scholar
[48]
J.B. Varley, H. Peelaers, A. Janotti, C.G. Van de Walle, Hydrogenated cation vacancies in semiconducting oxides, J. Phys.: Condens. Matter 23 (2011) art. 334212 (9 pp).
DOI: 10.1088/0953-8984/23/33/334212
Google Scholar
[49]
Z. Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X. L. Yuan, T. Sekiguchi, R. Suzuki, T. Ohdaira, Microvoid formation in hydrogen-implanted ZnO probed by a slow positron beam, Phys. Rev. B 71 (2005) art. 115213 (8 pp).
DOI: 10.1103/physrevb.71.115213
Google Scholar
[50]
F.A. Selim, M.H. Weber, D. Solodovnikov, K.G. Lynn, Nature of native defects in ZnO, Phys. Rev. Lett. 99 (2007) art. 085502 (4 pp).
DOI: 10.1103/physrevlett.99.085502
Google Scholar
[51]
G. Brauer, W. Anwand, D. Grambole, J. Grenzer, W. Skorupa, J. Cizek, J. Kuriplach, I. Prochazka, C.C. Ling, C.K. So, D. Schulz, D. Klimm, Identification of Zn-vacancy-hydrogen complexes in ZnO single crystals: A challenge to positron annihilation spectroscopy, Phys. Rev. B 79 (2009).
DOI: 10.1103/physrevb.79.115212
Google Scholar
[52]
B.B. Straumal, A.A. Mazilkin, S.G. Protasova, A.A. Myatiev, P.B. Straumal, G. Schütz, P.A. van Aken, E. Goering, B. Baretzky, Magnetization study of nanograined pure and Mn-doped ZnO films: Formation of a ferromagnetic grain-boundary foam, Phys. Rev. B 79 (2009).
DOI: 10.1103/physrevb.79.205206
Google Scholar
[53]
M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth, M. Grundmann, D. Spemann, T. Butz, G. Brauer, W. Anwand, G. Fischer, W.A. Adeagbo, W. Hergert, A. Ernst, Reproducible defect-induced magnetic order in pure ZnO films, Phys. Rev. B 2009) art. 035331 (5 pp).
DOI: 10.1103/physrevb.80.035331
Google Scholar
[54]
W. Anwand, G. Brauer, T.E. Cowan, D. Grambole, W. Skorupa, J. Cizek, J. Kuriplach, I. Prochazka, W. Egger, P. Sperr, Structural characterization of H plasma-doped ZnO single crystals by positron annihilation spectroscopies, Phys. Stat. Sol. A 207 (2010).
DOI: 10.1002/pssa.200925609
Google Scholar
[55]
M. Khalid, P. Esquinazi, D. Spemann, W. Anwand, G. Brauer, Hydrogen mediated ferromagnetism in ZnO single crystals, New J. Phys. 13 (2011) art. 063017 (7 pp).
DOI: 10.1088/1367-2630/13/6/063017
Google Scholar
[56]
D. Wang, Z.Q. Chen, D.D. Wang, N. Qi, J. Gong, C.Y. Cao, Z. Tang, Positron annihilation study of the interfacial defects in ZnO nanocrystals: Correlation with ferromagnetism, J. Appl. Phys. 107 (2010) art. 023524 (8 pp).
DOI: 10.1063/1.3291134
Google Scholar
[57]
D. Wang, Z.Q. Chen, D.D. Wang, J. Gong, C.Y. Cao, Z. Tang, L.R. Huang, Effect of thermal annealing on the structure and magnetism of Fe-doped ZnO nanocrystals synthesized by solid state reaction, J. Magn. Magn. Mater. 322 (2010) 3642-3647.
DOI: 10.1016/j.jmmm.2010.07.014
Google Scholar
[58]
G. Brauer, W. Anwand, W. Skorupa, H. Schmidt, M. Diaconu, M. Lorenz, M. Grundmann, Structure and ferromagnetism of Mn+ ion-implanted ZnO thin films on sapphire, Superlattices Microstruct. 39 (2006) 41-49.
DOI: 10.1016/j.spmi.2005.08.030
Google Scholar
[59]
K. Potzger, W. Anwand, H. Reuther, S. Zhou, G. Talut, G. Brauer, W. Skorupa, J. Fassbender, The effect of flash lamp annealing on Fe implanted ZnO single crystals, J. Appl. Phys. 101 (2007) art. 033906 (4 pp).
DOI: 10.1063/1.2427103
Google Scholar
[60]
K. Saarinen, T. Laine, S. Kuisma, J. Nissilä, P. Hautojärvi, L. Dobrzynski, J.M. Baranowski, K. Pakula, R. Stepniewski, M. Wojdak, A. Wysmolek, T. Suski, M. Leszczynski, I. Grzegory, S. Porowski, Observation of native Ga vacancies in GaN by positron annihilation, Phys. Rev. Lett. 79 (1997).
DOI: 10.1103/physrevlett.79.3030
Google Scholar
[61]
M. Roever, J. Malindretos, A. Bedoya-Pinto, Angela Rizzi, Tracking defect-induced ferromagnetism in GaN: Gd, Phys. Rev. B 84 (2011) art. 081201(R) (4 pp).
DOI: 10.1103/physrevb.84.081201
Google Scholar
[62]
X.L. Yang, W.X. Zhu, C.D. Wang, H. Fang, T.J. Yu, Z.J. Yang, G.Y. Zhang, X.B. Qin, R.S. Yu, B.Y. Wang, Positron annihilation in (Ga, Mn)N: A study of vacancy-type defects, Appl. Phys. Lett. 94 (2009) art. 151907 (3 pp).
DOI: 10.1063/1.3120267
Google Scholar
[63]
N. Kumar, D. Sanyal, A. Sundaresan, Defect induced ferromagnetism in MgO nanoparticles studied by optical and positron annihilation spectroscopy, Chem. Phys. Lett. 477 (2009) 360-364.
DOI: 10.1016/j.cplett.2009.07.037
Google Scholar
[64]
D.Q. Gao, J.Y. Li, Z.X. Li, Z.H. Zhang, J. Zhang, H.G. Shi, D.S. Xue, Defect-mediated magnetism in pure CaO nanopowders, J. Phys. Chem. C 114 (2010) 11703-11707.
DOI: 10.1021/jp911957j
Google Scholar
[65]
L. Li, S. Prucnal, S.D. Yao, K. Potzger, W. Anwand, A. Wagner, S.Q. Zhou, Rise and fall of defect induced ferromagnetism in SiC single crystals, Appl. Phys. Lett. 98 (2011) art. 222508 (3 pp).
DOI: 10.1063/1.3597629
Google Scholar
[66]
Y. Liu, G. Wang, S.C. Wang, J.H. Yang, L.A. Chen, X.B. Qin, B. Song, B.Y. Wang, X.L. Chen, Defect-induced magnetism in neutron irradiated 6H-SiC single crystals, Phys. Rev. Lett. 106 (2011) art. 087205 (4 pp).
DOI: 10.1103/physrevlett.106.087205
Google Scholar
[67]
A. Dupasquier, A.P. Mills, Jr . (Eds. ), Positron Spectroscopy of Solids, IOS, Amsterdam, (1995).
Google Scholar
[68]
R. Krause-Rehberg, H.S. Leipner (Eds. ), Positron Annihilation in Semiconductors – Defect Studies, Springer, Berlin, (1999).
DOI: 10.1007/978-3-662-03893-2_8
Google Scholar
[69]
W. Anwand, G. Brauer, M. Butterling, H. -R. Kissener, A. Wagner, Design and Construction of a slow positron beam for solid and surface investigations, (see article in this book).
DOI: 10.4028/www.scientific.net/ddf.331.25
Google Scholar
[70]
R. Krause-Rehberg, M. Jungmann, A. Krille, B. Werlich, A. Pohl, W. Anwand, G. Brauer, M. Butterling, H. Büttig, K. M. Kosev, J. Teichert, A. Wagner, T. E. Cowan, Use of superconducting linacs for positron generation: the EPOS system at the Forschungszentrum Dresden-Rossendorf (FZD), J. Phys.: Conf. Ser. 262 (2011).
DOI: 10.1088/1742-6596/262/1/012003
Google Scholar
[71]
Information at: http: /www. hzdr. de.
Google Scholar