Application of Positron Beams to the Investigation of Memristive Materials and Diluted Magnetic Semiconductors

Abstract:

Article Preview

After a general introduction to the field of resistive switching and spin electronics and the role of defects therein, recent investigations on the above mentioned topics including positron beams are reviewed. An ongoing project at the Helmholtz Centre Dresden-Rossendorf to further extend such investigations is briefly outlined and expected benefits are mentioned.

Info:

Periodical:

Edited by:

B.N. Ganguly and G. Brauer

Pages:

235-251

Citation:

K. Potzger and M. O. Liedke, "Application of Positron Beams to the Investigation of Memristive Materials and Diluted Magnetic Semiconductors", Defect and Diffusion Forum, Vol. 331, pp. 235-251, 2012

Online since:

September 2012

Export:

Price:

$38.00

[1] R. Waser (Ed. ), Nanotechnology, Vol. 3, Wiley-VCH, Weinheim, (2008).

[2] R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges, Adv. Mater. 21 (2009) 2632-2655.

DOI: https://doi.org/10.1002/adma.200900375

[3] M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage, Nat. Mater. (2007) 824-832.

DOI: https://doi.org/10.1038/nmat2009

[4] C. Schindler, M. Weides, M.N. Kozicki, R. Waser, Low current resistive switching in Cu–SiO2 cells, Appl. Phys. Lett 92 (2008) art. 122910 (3 pp).

DOI: https://doi.org/10.1063/1.2903707

[5] B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition, J. Appl. Phys. 98 (2005).

DOI: https://doi.org/10.1063/1.2001146

[6] D.C. Kim, S. Seo, S.E. Ahn, D. -S. Suh, M.J. Lee, B. -H. Park, I.K. Yoo, I.G. Baek, H. -J. Kim, E.K. Yim, J.E. Lee, S.O. Park, H.S. Kim, U. -I. Chung, J.T. Moon, B.I. Ryu, Electrical observations of filamentary conductions for the resistive memory switching in NiO films, Appl. Phys. Lett. 88 (2006).

DOI: https://doi.org/10.1063/1.2204649

[7] K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3, Nat. Mater. 5 (2006) 312-320.

DOI: https://doi.org/10.1038/nmat1614

[8] A.S. Hamid, A. Uedono, T. Chikyow, K. Uwe, K. Mochizuki, S. Kawaminami, Vacancy- type defects and electronic structure of perovskite-oxide SrTiO3 from positron annihilation, Phys. Stat. Sol. A 203 (2006) 300-305.

DOI: https://doi.org/10.1002/pssa.200521209

[9] R. Ferragut, A. Dupaquier, S. Brivio, R. Bertacco, W. Egger, Study of defects in an electroresistive Au/La2/3Sr1/3MnO3/SrTiO3(001) heterostructure by positron annihilation, J. Appl. Phys. 110 (2011) art. 053511 (6 pp).

DOI: https://doi.org/10.1063/1.3631825

[10] S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: A spin-based electronics vision for the future, Science 294 (2001) 1488-1495.

DOI: https://doi.org/10.1007/978-94-017-0532-5

[11] C. Chappert, A. Fert, F.N. van Dau, The emergence of spin electronics in data storage, Nature Mater. 6 (2007) 813-832.

DOI: https://doi.org/10.1038/nmat2024

[12] K. Sato, L. Bergqvist, J. Kudrnovsky, P.H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V.A. Dinh, T. Fukushima, H. Kizaki, R. Zeller, First-principles theory of dilute magnetic semiconductors, Rev. Mod. Phys. 82 (2010).

DOI: https://doi.org/10.1103/revmodphys.82.1633

[13] J. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater. 159 (1996) L1-L7.

[14] L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B 54 (1996) 9353-9358.

DOI: https://doi.org/10.1103/physrevb.54.9353

[15] F.J. Albert, N.C. Emley, E.B. Myers, D.C. Ralph, R.A. Buhrman, Quantitative study of magnetization reversal by spin-polarized current in magnetic multilayer nanopillars, Phys. Rev. Lett. 89 (2002) art. 226802 (4 pp).

DOI: https://doi.org/10.1103/physrevlett.89.226802

[16] D. Chiba, Y. Sato, T. Kita, F. Matsukura, H. Ohno, Current-driven magnetization reversal in a ferromagnetic semiconductor (Ga, Mn)As/GaAs/(Ga, Mn)As tunnel junction, Phys. Rev. Lett. 93 (2004) art. 216602 (4 pp).

DOI: https://doi.org/10.1103/physrevlett.93.216602

[17] J. Wunderlich, A.C. Irvine, J. Zemen, V. Holy, A.W. Rushforth, E. De Deranieri, U. Rana, K. Vyborny, J. Sinova, C.T. Foxon, R.P. Campion, D.A. Williams, B.L. Gallagher, T. Jungwirth, Local control of magneto-crystalline anisotropy in (Ga, Mn)As microdevices: Demonstration in current-induced switching, Phys. Rev. B 76 (2007).

DOI: https://doi.org/10.1103/physrevb.76.054424

[18] H. Ohno, T. Dietl, Spin-transfer physics and the model of ferromagnetism in (Ga, Mn)As, J. Magn. Magn. Mater. 320 (2008) 1293-1299.

DOI: https://doi.org/10.1016/j.jmmm.2007.12.016

[19] S. Datta, B. Das, Electronic analog of the electro-optic modulator, Appl. Phys. Lett. 56 (1990) 665-667.

DOI: https://doi.org/10.1063/1.102730

[20] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs, Appl. Phys. Lett. 69 (1996) 363-365.

DOI: https://doi.org/10.1063/1.118061

[21] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science 287 (2000) 1019-1022.

DOI: https://doi.org/10.1126/science.287.5455.1019

[22] T. Jungwirth, K.Y. Wang, J. Masek, K.W. Edmonds, J. Konig, J. Sinova, M. Pollini, N.A. Goncharuk, A.H. MacDonald, M. Sawicki, A.W. Rushforth, R.P. Campion, L.X. Zhao, C. T. Foxon, and B. L. Gallagher, Prospects for high temperature ferromagnetism in (Ga, Mn)As semiconductors, Phys. Rev. B 72 (2005).

DOI: https://doi.org/10.1103/physrevb.72.165204

[23] M. Wang, R.P. Campion, A.W. Rushforth, K.W. Edmonds, C.T. Foxon, B.L. Gallagher, Achieving high Curie temperature in (Ga, Mn)As, Appl. Phys. Lett. 93 (2008) art. 132103 (3 pp).

DOI: https://doi.org/10.1063/1.2992200

[24] T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides, Nat. Mater. 9 (2010) 965-974.

DOI: https://doi.org/10.1038/nmat2898

[25] S. Ohya, K. Takata, M. Tanaka, Nearly non-magnetic valence band of the ferromagnetic semiconductor GaMnAs, Nature Phys. 7 (2011) 342-347.

DOI: https://doi.org/10.1038/nphys1905

[26] K. Sato, H. Katayama-Yoshida, First principles materials design for semiconductor spintronics, Semicond. Sci. Technol. 17 (2002) 367-376.

DOI: https://doi.org/10.1088/0268-1242/17/4/309

[27] J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nature Mater. 4 (2005) 173-179.

DOI: https://doi.org/10.1038/nmat1310

[28] S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, L.A. Boatner, Wide band gap ferromagnetic semiconductors and oxides, J. Appl. Phys. 93 (2003) 1-13.

DOI: https://doi.org/10.1063/1.1517164

[29] C. Liu, F. Yun, H. Morkoc, Ferromagnetism of ZnO and GaN: A review, J. Mater. Sci. – Mater. El. 16 (2005) 555-597.

DOI: https://doi.org/10.1007/s10854-005-3232-1

[30] A. Ney, M. Opel, T.C. Kaspar, V. Ney, S. Ye, K. Ollefs, T. Kammermeier, S. Bauer, K. -W. Nielsen, S.T.B. Goennenwein, M.H. Engelhard, S. Zhou, K. Potzger, J. Simon, W. Mader, S.M. Heald, J.C. Cezar, F. Wilhelm, A. Rogalev, R. Gross, S.A. Chambers, Advanced spectroscopic synchrotron techniques to unravel the intrinsic properties of dilute magnetic oxides: the case of Co: ZnO, New J. Phys. 12 (2010).

DOI: https://doi.org/10.1088/1367-2630/12/1/013020

[31] D.W. Abraham, M.M. Frank, S. Guha, Absence of magnetism in hafnium oxide films, Appl. Phys. Lett. 87 (2005) art. 252502 (3 pp).

DOI: https://doi.org/10.1063/1.2146057

[32] M.A. Garcia, E.F. Pinel, J. de la Venta, A. Quesada, V. Bouzas, J.F. Fernandez, J.J. Romero, M.S.M. Gonzalez, J.L. Costa-Kramer, Sources of experimental errors in the observation of nanoscale magnetism, J. Appl. Phys. 105 (2009).

DOI: https://doi.org/10.1063/1.3060808

[33] J.M.D. Coey, P. Stamenov, R.D. Gunning, M. Venkatesan, K. Paul, Ferromagnetism in defect-ridden oxides and related materials, New J. Phys. 12 (2010) art. 053025 (14 pp).

DOI: https://doi.org/10.1088/1367-2630/12/5/053025

[34] K. Potzger, S. Zhou, Non-DMS related ferromagnetism in transition metal doped zinc oxide, phys. stat. sol. (b) 246 (2009) 1147-1167.

DOI: https://doi.org/10.1002/pssb.200844272

[35] S. Zhou, M. Berndt, D. Burger, V. Heera, K. Potzger, G. Abrasonis, G. Radnoczi, G.J. Kovacs, A. Kolitsch, M. Helm, J. Fassbender, W. Moeller, H. Schmidt, Spin-dependent transport in nanocomposite C: Co films, Act. Mater. 57 (2009) 4758-4764.

DOI: https://doi.org/10.1016/j.actamat.2009.06.035

[36] G. Bouzerar, T. Ziman, J. Kudrnovsky, Compensation, interstitial defects, and ferromagnetism in diluted ferromagnetic semiconductors, Phys. Rev. B 72 (2005) art. 125207 (5 pp).

DOI: https://doi.org/10.1103/physrevb.72.125207

[37] S.B. Ogale, Dilute doping, defects, and ferromagnetism in metal oxide systems, Adv. Mater. 22 (2010) 3125-3155.

DOI: https://doi.org/10.1002/adma.200903891

[38] R.K. Singhal, A. Samariya, S. Kumar, Y.T. Xing, D.C. Jain, S.N. Dolia, U.P. Deshpande, T. Shripathi, E.B. Saitovitch, Study of defect-induced ferromagnetism in hydrogenated anatase TiO2: Co, J. Appl. Phys. 107 (2010) art. 113916 (7 pp).

DOI: https://doi.org/10.1063/1.4881078

[39] S. Zhou, E. Cizmar, K. Potzger, M. Krause, G. Talut, M. Helm, J. Fassbender, S.A. Zvyagin, J. Wosnitza, H. Schmidt, Origin of magnetic moments in defective TiO2 single crystals, Phys. Rev. B 79 (2009) art. 113201 (4 pp).

DOI: https://doi.org/10.1103/physrevb.79.113201

[40] Y. Yamada, K. Ueno, T. Fukumura, H.T. Yuan, H. Shimotani, Y. Iwasa, L. Gu, S. Tsukimoto, Y. Ikuhara, M. Kawasaki, Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide, Science (2011) 1065-1067.

DOI: https://doi.org/10.1126/science.1202152

[41] G. Ciatto, A. Di Trolio, E. Fonda, P. Alippi, A.M. Testa, A.A. Bonapasta, Evidence of Cobalt-vacancy complexes in Zn1-xCoxO dilute magnetic semiconductors, Phys. Rev. Lett. 107 (2011) art. 127206 (5 pp).

DOI: https://doi.org/10.1103/physrevlett.107.127206

[42] K.E.H.M. Hanssen, P.E. Mijnarends, L.P.L.M. Rabou, K.H.J. Buschow, Positron-annihilation study of the half-metallic ferromagnet NiMnSb: Experiment, Phys. Rev. B. 42 (1990) 1533-1540.

DOI: https://doi.org/10.1103/physrevb.42.1533

[43] E.A. Livesay, R.N. West, S.B. Dugdale, G. Santi, T. Jarlborg, Fermi surface of the colossal magnetoresistance perovskite La0. 7Sr0. 3MnO3, J. Phys.: Condens. Matter 11 (1999) L279-L285.

DOI: https://doi.org/10.1088/0953-8984/11/25/104

[44] F. Tuomisto, K. Pennanen, K. Saarinen, J. Sadowski, Ga sublattice defects in (Ga, Mn)As: Thermodynamical and kinetic trends, Phys. Rev. Lett. 93 (2004) art. 055505 (4 pp).

DOI: https://doi.org/10.1103/physrevlett.93.055505

[45] A. Janotti, C.G. Van de Walle, Native point defects in ZnO, Phys. Rev. B 76 (2007) art. 165202 (22 pp).

[46] F. Tuomisto, V. Ranki, K. Saarinen, D.C. Look, Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO, Phys. Rev. Lett. 91 (2003) art. 205502 (4 pp).

DOI: https://doi.org/10.1103/physrevlett.91.205502

[47] A. Janotti, C.G. Van de Walle, Hydrogen multicentre bonds, Nat. Mater. 6 (2007) 44-47.

DOI: https://doi.org/10.1038/nmat1795

[48] J.B. Varley, H. Peelaers, A. Janotti, C.G. Van de Walle, Hydrogenated cation vacancies in semiconducting oxides, J. Phys.: Condens. Matter 23 (2011) art. 334212 (9 pp).

DOI: https://doi.org/10.1088/0953-8984/23/33/334212

[49] Z. Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X. L. Yuan, T. Sekiguchi, R. Suzuki, T. Ohdaira, Microvoid formation in hydrogen-implanted ZnO probed by a slow positron beam, Phys. Rev. B 71 (2005) art. 115213 (8 pp).

DOI: https://doi.org/10.1103/physrevb.71.115213

[50] F.A. Selim, M.H. Weber, D. Solodovnikov, K.G. Lynn, Nature of native defects in ZnO, Phys. Rev. Lett. 99 (2007) art. 085502 (4 pp).

[51] G. Brauer, W. Anwand, D. Grambole, J. Grenzer, W. Skorupa, J. Cizek, J. Kuriplach, I. Prochazka, C.C. Ling, C.K. So, D. Schulz, D. Klimm, Identification of Zn-vacancy-hydrogen complexes in ZnO single crystals: A challenge to positron annihilation spectroscopy, Phys. Rev. B 79 (2009).

DOI: https://doi.org/10.1103/physrevb.79.115212

[52] B.B. Straumal, A.A. Mazilkin, S.G. Protasova, A.A. Myatiev, P.B. Straumal, G. Schütz, P.A. van Aken, E. Goering, B. Baretzky, Magnetization study of nanograined pure and Mn-doped ZnO films: Formation of a ferromagnetic grain-boundary foam, Phys. Rev. B 79 (2009).

DOI: https://doi.org/10.1103/physrevb.79.205206

[53] M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth, M. Grundmann, D. Spemann, T. Butz, G. Brauer, W. Anwand, G. Fischer, W.A. Adeagbo, W. Hergert, A. Ernst, Reproducible defect-induced magnetic order in pure ZnO films, Phys. Rev. B 2009) art. 035331 (5 pp).

DOI: https://doi.org/10.1103/physrevb.80.035331

[54] W. Anwand, G. Brauer, T.E. Cowan, D. Grambole, W. Skorupa, J. Cizek, J. Kuriplach, I. Prochazka, W. Egger, P. Sperr, Structural characterization of H plasma-doped ZnO single crystals by positron annihilation spectroscopies, Phys. Stat. Sol. A 207 (2010).

DOI: https://doi.org/10.1002/pssa.200925609

[55] M. Khalid, P. Esquinazi, D. Spemann, W. Anwand, G. Brauer, Hydrogen mediated ferromagnetism in ZnO single crystals, New J. Phys. 13 (2011) art. 063017 (7 pp).

DOI: https://doi.org/10.1088/1367-2630/13/6/063017

[56] D. Wang, Z.Q. Chen, D.D. Wang, N. Qi, J. Gong, C.Y. Cao, Z. Tang, Positron annihilation study of the interfacial defects in ZnO nanocrystals: Correlation with ferromagnetism, J. Appl. Phys. 107 (2010) art. 023524 (8 pp).

DOI: https://doi.org/10.1063/1.3291134

[57] D. Wang, Z.Q. Chen, D.D. Wang, J. Gong, C.Y. Cao, Z. Tang, L.R. Huang, Effect of thermal annealing on the structure and magnetism of Fe-doped ZnO nanocrystals synthesized by solid state reaction, J. Magn. Magn. Mater. 322 (2010) 3642-3647.

DOI: https://doi.org/10.1016/j.jmmm.2010.07.014

[58] G. Brauer, W. Anwand, W. Skorupa, H. Schmidt, M. Diaconu, M. Lorenz, M. Grundmann, Structure and ferromagnetism of Mn+ ion-implanted ZnO thin films on sapphire, Superlattices Microstruct. 39 (2006) 41-49.

DOI: https://doi.org/10.1016/j.spmi.2005.08.030

[59] K. Potzger, W. Anwand, H. Reuther, S. Zhou, G. Talut, G. Brauer, W. Skorupa, J. Fassbender, The effect of flash lamp annealing on Fe implanted ZnO single crystals, J. Appl. Phys. 101 (2007) art. 033906 (4 pp).

DOI: https://doi.org/10.1063/1.2427103

[60] K. Saarinen, T. Laine, S. Kuisma, J. Nissilä, P. Hautojärvi, L. Dobrzynski, J.M. Baranowski, K. Pakula, R. Stepniewski, M. Wojdak, A. Wysmolek, T. Suski, M. Leszczynski, I. Grzegory, S. Porowski, Observation of native Ga vacancies in GaN by positron annihilation, Phys. Rev. Lett. 79 (1997).

DOI: https://doi.org/10.1103/physrevlett.79.3030

[61] M. Roever, J. Malindretos, A. Bedoya-Pinto, Angela Rizzi, Tracking defect-induced ferromagnetism in GaN: Gd, Phys. Rev. B 84 (2011) art. 081201(R) (4 pp).

DOI: https://doi.org/10.1103/physrevb.84.081201

[62] X.L. Yang, W.X. Zhu, C.D. Wang, H. Fang, T.J. Yu, Z.J. Yang, G.Y. Zhang, X.B. Qin, R.S. Yu, B.Y. Wang, Positron annihilation in (Ga, Mn)N: A study of vacancy-type defects, Appl. Phys. Lett. 94 (2009) art. 151907 (3 pp).

DOI: https://doi.org/10.1063/1.3120267

[63] N. Kumar, D. Sanyal, A. Sundaresan, Defect induced ferromagnetism in MgO nanoparticles studied by optical and positron annihilation spectroscopy, Chem. Phys. Lett. 477 (2009) 360-364.

DOI: https://doi.org/10.1016/j.cplett.2009.07.037

[64] D.Q. Gao, J.Y. Li, Z.X. Li, Z.H. Zhang, J. Zhang, H.G. Shi, D.S. Xue, Defect-mediated magnetism in pure CaO nanopowders, J. Phys. Chem. C 114 (2010) 11703-11707.

DOI: https://doi.org/10.1021/jp911957j

[65] L. Li, S. Prucnal, S.D. Yao, K. Potzger, W. Anwand, A. Wagner, S.Q. Zhou, Rise and fall of defect induced ferromagnetism in SiC single crystals, Appl. Phys. Lett. 98 (2011) art. 222508 (3 pp).

DOI: https://doi.org/10.1063/1.3597629

[66] Y. Liu, G. Wang, S.C. Wang, J.H. Yang, L.A. Chen, X.B. Qin, B. Song, B.Y. Wang, X.L. Chen, Defect-induced magnetism in neutron irradiated 6H-SiC single crystals, Phys. Rev. Lett. 106 (2011) art. 087205 (4 pp).

DOI: https://doi.org/10.1103/physrevlett.106.087205

[67] A. Dupasquier, A.P. Mills, Jr . (Eds. ), Positron Spectroscopy of Solids, IOS, Amsterdam, (1995).

[68] R. Krause-Rehberg, H.S. Leipner (Eds. ), Positron Annihilation in Semiconductors – Defect Studies, Springer, Berlin, (1999).

DOI: https://doi.org/10.1007/978-3-662-03893-2_4

[69] W. Anwand, G. Brauer, M. Butterling, H. -R. Kissener, A. Wagner, Design and Construction of a slow positron beam for solid and surface investigations, (see article in this book).

DOI: https://doi.org/10.4028/www.scientific.net/ddf.331.25

[70] R. Krause-Rehberg, M. Jungmann, A. Krille, B. Werlich, A. Pohl, W. Anwand, G. Brauer, M. Butterling, H. Büttig, K. M. Kosev, J. Teichert, A. Wagner, T. E. Cowan, Use of superconducting linacs for positron generation: the EPOS system at the Forschungszentrum Dresden-Rossendorf (FZD), J. Phys.: Conf. Ser. 262 (2011).

DOI: https://doi.org/10.1088/1742-6596/262/1/012003

[71] Information at: http: /www. hzdr. de.