Application of Positron Beams to the Investigation of Memristive Materials and Diluted Magnetic Semiconductors

Article Preview

Abstract:

After a general introduction to the field of resistive switching and spin electronics and the role of defects therein, recent investigations on the above mentioned topics including positron beams are reviewed. An ongoing project at the Helmholtz Centre Dresden-Rossendorf to further extend such investigations is briefly outlined and expected benefits are mentioned.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

235-251

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Waser (Ed. ), Nanotechnology, Vol. 3, Wiley-VCH, Weinheim, (2008).

Google Scholar

[2] R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges, Adv. Mater. 21 (2009) 2632-2655.

DOI: 10.1002/adma.200900375

Google Scholar

[3] M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage, Nat. Mater. (2007) 824-832.

DOI: 10.1038/nmat2009

Google Scholar

[4] C. Schindler, M. Weides, M.N. Kozicki, R. Waser, Low current resistive switching in Cu–SiO2 cells, Appl. Phys. Lett 92 (2008) art. 122910 (3 pp).

DOI: 10.1063/1.2903707

Google Scholar

[5] B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition, J. Appl. Phys. 98 (2005).

DOI: 10.1063/1.2001146

Google Scholar

[6] D.C. Kim, S. Seo, S.E. Ahn, D. -S. Suh, M.J. Lee, B. -H. Park, I.K. Yoo, I.G. Baek, H. -J. Kim, E.K. Yim, J.E. Lee, S.O. Park, H.S. Kim, U. -I. Chung, J.T. Moon, B.I. Ryu, Electrical observations of filamentary conductions for the resistive memory switching in NiO films, Appl. Phys. Lett. 88 (2006).

DOI: 10.1063/1.2204649

Google Scholar

[7] K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3, Nat. Mater. 5 (2006) 312-320.

DOI: 10.1038/nmat1614

Google Scholar

[8] A.S. Hamid, A. Uedono, T. Chikyow, K. Uwe, K. Mochizuki, S. Kawaminami, Vacancy- type defects and electronic structure of perovskite-oxide SrTiO3 from positron annihilation, Phys. Stat. Sol. A 203 (2006) 300-305.

DOI: 10.1002/pssa.200521209

Google Scholar

[9] R. Ferragut, A. Dupaquier, S. Brivio, R. Bertacco, W. Egger, Study of defects in an electroresistive Au/La2/3Sr1/3MnO3/SrTiO3(001) heterostructure by positron annihilation, J. Appl. Phys. 110 (2011) art. 053511 (6 pp).

DOI: 10.1063/1.3631825

Google Scholar

[10] S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: A spin-based electronics vision for the future, Science 294 (2001) 1488-1495.

DOI: 10.1126/science.1065389

Google Scholar

[11] C. Chappert, A. Fert, F.N. van Dau, The emergence of spin electronics in data storage, Nature Mater. 6 (2007) 813-832.

DOI: 10.1038/nmat2024

Google Scholar

[12] K. Sato, L. Bergqvist, J. Kudrnovsky, P.H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V.A. Dinh, T. Fukushima, H. Kizaki, R. Zeller, First-principles theory of dilute magnetic semiconductors, Rev. Mod. Phys. 82 (2010).

DOI: 10.1103/revmodphys.82.1633

Google Scholar

[13] J. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater. 159 (1996) L1-L7.

DOI: 10.1016/0304-8853(96)00062-5

Google Scholar

[14] L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B 54 (1996) 9353-9358.

DOI: 10.1103/physrevb.54.9353

Google Scholar

[15] F.J. Albert, N.C. Emley, E.B. Myers, D.C. Ralph, R.A. Buhrman, Quantitative study of magnetization reversal by spin-polarized current in magnetic multilayer nanopillars, Phys. Rev. Lett. 89 (2002) art. 226802 (4 pp).

DOI: 10.1103/physrevlett.89.226802

Google Scholar

[16] D. Chiba, Y. Sato, T. Kita, F. Matsukura, H. Ohno, Current-driven magnetization reversal in a ferromagnetic semiconductor (Ga, Mn)As/GaAs/(Ga, Mn)As tunnel junction, Phys. Rev. Lett. 93 (2004) art. 216602 (4 pp).

DOI: 10.1103/physrevlett.96.096601

Google Scholar

[17] J. Wunderlich, A.C. Irvine, J. Zemen, V. Holy, A.W. Rushforth, E. De Deranieri, U. Rana, K. Vyborny, J. Sinova, C.T. Foxon, R.P. Campion, D.A. Williams, B.L. Gallagher, T. Jungwirth, Local control of magneto-crystalline anisotropy in (Ga, Mn)As microdevices: Demonstration in current-induced switching, Phys. Rev. B 76 (2007).

DOI: 10.1103/physrevb.76.054424

Google Scholar

[18] H. Ohno, T. Dietl, Spin-transfer physics and the model of ferromagnetism in (Ga, Mn)As, J. Magn. Magn. Mater. 320 (2008) 1293-1299.

DOI: 10.1016/j.jmmm.2007.12.016

Google Scholar

[19] S. Datta, B. Das, Electronic analog of the electro-optic modulator, Appl. Phys. Lett. 56 (1990) 665-667.

DOI: 10.1063/1.102730

Google Scholar

[20] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs, Appl. Phys. Lett. 69 (1996) 363-365.

DOI: 10.1063/1.118061

Google Scholar

[21] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science 287 (2000) 1019-1022.

DOI: 10.1126/science.287.5455.1019

Google Scholar

[22] T. Jungwirth, K.Y. Wang, J. Masek, K.W. Edmonds, J. Konig, J. Sinova, M. Pollini, N.A. Goncharuk, A.H. MacDonald, M. Sawicki, A.W. Rushforth, R.P. Campion, L.X. Zhao, C. T. Foxon, and B. L. Gallagher, Prospects for high temperature ferromagnetism in (Ga, Mn)As semiconductors, Phys. Rev. B 72 (2005).

DOI: 10.1103/physrevb.72.165204

Google Scholar

[23] M. Wang, R.P. Campion, A.W. Rushforth, K.W. Edmonds, C.T. Foxon, B.L. Gallagher, Achieving high Curie temperature in (Ga, Mn)As, Appl. Phys. Lett. 93 (2008) art. 132103 (3 pp).

DOI: 10.1063/1.2992200

Google Scholar

[24] T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides, Nat. Mater. 9 (2010) 965-974.

DOI: 10.1038/nmat2898

Google Scholar

[25] S. Ohya, K. Takata, M. Tanaka, Nearly non-magnetic valence band of the ferromagnetic semiconductor GaMnAs, Nature Phys. 7 (2011) 342-347.

DOI: 10.1038/nphys1905

Google Scholar

[26] K. Sato, H. Katayama-Yoshida, First principles materials design for semiconductor spintronics, Semicond. Sci. Technol. 17 (2002) 367-376.

DOI: 10.1088/0268-1242/17/4/309

Google Scholar

[27] J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nature Mater. 4 (2005) 173-179.

DOI: 10.1038/nmat1310

Google Scholar

[28] S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, L.A. Boatner, Wide band gap ferromagnetic semiconductors and oxides, J. Appl. Phys. 93 (2003) 1-13.

DOI: 10.1063/1.1517164

Google Scholar

[29] C. Liu, F. Yun, H. Morkoc, Ferromagnetism of ZnO and GaN: A review, J. Mater. Sci. – Mater. El. 16 (2005) 555-597.

Google Scholar

[30] A. Ney, M. Opel, T.C. Kaspar, V. Ney, S. Ye, K. Ollefs, T. Kammermeier, S. Bauer, K. -W. Nielsen, S.T.B. Goennenwein, M.H. Engelhard, S. Zhou, K. Potzger, J. Simon, W. Mader, S.M. Heald, J.C. Cezar, F. Wilhelm, A. Rogalev, R. Gross, S.A. Chambers, Advanced spectroscopic synchrotron techniques to unravel the intrinsic properties of dilute magnetic oxides: the case of Co: ZnO, New J. Phys. 12 (2010).

DOI: 10.1088/1367-2630/12/1/013020

Google Scholar

[31] D.W. Abraham, M.M. Frank, S. Guha, Absence of magnetism in hafnium oxide films, Appl. Phys. Lett. 87 (2005) art. 252502 (3 pp).

DOI: 10.1063/1.2146057

Google Scholar

[32] M.A. Garcia, E.F. Pinel, J. de la Venta, A. Quesada, V. Bouzas, J.F. Fernandez, J.J. Romero, M.S.M. Gonzalez, J.L. Costa-Kramer, Sources of experimental errors in the observation of nanoscale magnetism, J. Appl. Phys. 105 (2009).

DOI: 10.1063/1.3060808

Google Scholar

[33] J.M.D. Coey, P. Stamenov, R.D. Gunning, M. Venkatesan, K. Paul, Ferromagnetism in defect-ridden oxides and related materials, New J. Phys. 12 (2010) art. 053025 (14 pp).

DOI: 10.1088/1367-2630/12/5/053025

Google Scholar

[34] K. Potzger, S. Zhou, Non-DMS related ferromagnetism in transition metal doped zinc oxide, phys. stat. sol. (b) 246 (2009) 1147-1167.

DOI: 10.1002/pssb.200844272

Google Scholar

[35] S. Zhou, M. Berndt, D. Burger, V. Heera, K. Potzger, G. Abrasonis, G. Radnoczi, G.J. Kovacs, A. Kolitsch, M. Helm, J. Fassbender, W. Moeller, H. Schmidt, Spin-dependent transport in nanocomposite C: Co films, Act. Mater. 57 (2009) 4758-4764.

DOI: 10.1016/j.actamat.2009.06.035

Google Scholar

[36] G. Bouzerar, T. Ziman, J. Kudrnovsky, Compensation, interstitial defects, and ferromagnetism in diluted ferromagnetic semiconductors, Phys. Rev. B 72 (2005) art. 125207 (5 pp).

DOI: 10.1103/physrevb.72.125207

Google Scholar

[37] S.B. Ogale, Dilute doping, defects, and ferromagnetism in metal oxide systems, Adv. Mater. 22 (2010) 3125-3155.

DOI: 10.1002/adma.200903891

Google Scholar

[38] R.K. Singhal, A. Samariya, S. Kumar, Y.T. Xing, D.C. Jain, S.N. Dolia, U.P. Deshpande, T. Shripathi, E.B. Saitovitch, Study of defect-induced ferromagnetism in hydrogenated anatase TiO2: Co, J. Appl. Phys. 107 (2010) art. 113916 (7 pp).

DOI: 10.1063/1.3431396

Google Scholar

[39] S. Zhou, E. Cizmar, K. Potzger, M. Krause, G. Talut, M. Helm, J. Fassbender, S.A. Zvyagin, J. Wosnitza, H. Schmidt, Origin of magnetic moments in defective TiO2 single crystals, Phys. Rev. B 79 (2009) art. 113201 (4 pp).

DOI: 10.1103/physrevb.79.113201

Google Scholar

[40] Y. Yamada, K. Ueno, T. Fukumura, H.T. Yuan, H. Shimotani, Y. Iwasa, L. Gu, S. Tsukimoto, Y. Ikuhara, M. Kawasaki, Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide, Science (2011) 1065-1067.

DOI: 10.1126/science.1202152

Google Scholar

[41] G. Ciatto, A. Di Trolio, E. Fonda, P. Alippi, A.M. Testa, A.A. Bonapasta, Evidence of Cobalt-vacancy complexes in Zn1-xCoxO dilute magnetic semiconductors, Phys. Rev. Lett. 107 (2011) art. 127206 (5 pp).

DOI: 10.1103/physrevlett.107.127206

Google Scholar

[42] K.E.H.M. Hanssen, P.E. Mijnarends, L.P.L.M. Rabou, K.H.J. Buschow, Positron-annihilation study of the half-metallic ferromagnet NiMnSb: Experiment, Phys. Rev. B. 42 (1990) 1533-1540.

DOI: 10.1103/physrevb.42.1533

Google Scholar

[43] E.A. Livesay, R.N. West, S.B. Dugdale, G. Santi, T. Jarlborg, Fermi surface of the colossal magnetoresistance perovskite La0. 7Sr0. 3MnO3, J. Phys.: Condens. Matter 11 (1999) L279-L285.

DOI: 10.1088/0953-8984/11/25/104

Google Scholar

[44] F. Tuomisto, K. Pennanen, K. Saarinen, J. Sadowski, Ga sublattice defects in (Ga, Mn)As: Thermodynamical and kinetic trends, Phys. Rev. Lett. 93 (2004) art. 055505 (4 pp).

DOI: 10.1103/physrevlett.93.055505

Google Scholar

[45] A. Janotti, C.G. Van de Walle, Native point defects in ZnO, Phys. Rev. B 76 (2007) art. 165202 (22 pp).

DOI: 10.1103/physrevb.76.165202

Google Scholar

[46] F. Tuomisto, V. Ranki, K. Saarinen, D.C. Look, Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO, Phys. Rev. Lett. 91 (2003) art. 205502 (4 pp).

DOI: 10.1103/physrevlett.91.205502

Google Scholar

[47] A. Janotti, C.G. Van de Walle, Hydrogen multicentre bonds, Nat. Mater. 6 (2007) 44-47.

Google Scholar

[48] J.B. Varley, H. Peelaers, A. Janotti, C.G. Van de Walle, Hydrogenated cation vacancies in semiconducting oxides, J. Phys.: Condens. Matter 23 (2011) art. 334212 (9 pp).

DOI: 10.1088/0953-8984/23/33/334212

Google Scholar

[49] Z. Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X. L. Yuan, T. Sekiguchi, R. Suzuki, T. Ohdaira, Microvoid formation in hydrogen-implanted ZnO probed by a slow positron beam, Phys. Rev. B 71 (2005) art. 115213 (8 pp).

DOI: 10.1103/physrevb.71.115213

Google Scholar

[50] F.A. Selim, M.H. Weber, D. Solodovnikov, K.G. Lynn, Nature of native defects in ZnO, Phys. Rev. Lett. 99 (2007) art. 085502 (4 pp).

DOI: 10.1103/physrevlett.99.085502

Google Scholar

[51] G. Brauer, W. Anwand, D. Grambole, J. Grenzer, W. Skorupa, J. Cizek, J. Kuriplach, I. Prochazka, C.C. Ling, C.K. So, D. Schulz, D. Klimm, Identification of Zn-vacancy-hydrogen complexes in ZnO single crystals: A challenge to positron annihilation spectroscopy, Phys. Rev. B 79 (2009).

DOI: 10.1103/physrevb.79.115212

Google Scholar

[52] B.B. Straumal, A.A. Mazilkin, S.G. Protasova, A.A. Myatiev, P.B. Straumal, G. Schütz, P.A. van Aken, E. Goering, B. Baretzky, Magnetization study of nanograined pure and Mn-doped ZnO films: Formation of a ferromagnetic grain-boundary foam, Phys. Rev. B 79 (2009).

DOI: 10.1103/physrevb.79.205206

Google Scholar

[53] M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth, M. Grundmann, D. Spemann, T. Butz, G. Brauer, W. Anwand, G. Fischer, W.A. Adeagbo, W. Hergert, A. Ernst, Reproducible defect-induced magnetic order in pure ZnO films, Phys. Rev. B 2009) art. 035331 (5 pp).

DOI: 10.1103/physrevb.80.035331

Google Scholar

[54] W. Anwand, G. Brauer, T.E. Cowan, D. Grambole, W. Skorupa, J. Cizek, J. Kuriplach, I. Prochazka, W. Egger, P. Sperr, Structural characterization of H plasma-doped ZnO single crystals by positron annihilation spectroscopies, Phys. Stat. Sol. A 207 (2010).

DOI: 10.1002/pssa.200925609

Google Scholar

[55] M. Khalid, P. Esquinazi, D. Spemann, W. Anwand, G. Brauer, Hydrogen mediated ferromagnetism in ZnO single crystals, New J. Phys. 13 (2011) art. 063017 (7 pp).

DOI: 10.1088/1367-2630/13/6/063017

Google Scholar

[56] D. Wang, Z.Q. Chen, D.D. Wang, N. Qi, J. Gong, C.Y. Cao, Z. Tang, Positron annihilation study of the interfacial defects in ZnO nanocrystals: Correlation with ferromagnetism, J. Appl. Phys. 107 (2010) art. 023524 (8 pp).

DOI: 10.1063/1.3291134

Google Scholar

[57] D. Wang, Z.Q. Chen, D.D. Wang, J. Gong, C.Y. Cao, Z. Tang, L.R. Huang, Effect of thermal annealing on the structure and magnetism of Fe-doped ZnO nanocrystals synthesized by solid state reaction, J. Magn. Magn. Mater. 322 (2010) 3642-3647.

DOI: 10.1016/j.jmmm.2010.07.014

Google Scholar

[58] G. Brauer, W. Anwand, W. Skorupa, H. Schmidt, M. Diaconu, M. Lorenz, M. Grundmann, Structure and ferromagnetism of Mn+ ion-implanted ZnO thin films on sapphire, Superlattices Microstruct. 39 (2006) 41-49.

DOI: 10.1016/j.spmi.2005.08.030

Google Scholar

[59] K. Potzger, W. Anwand, H. Reuther, S. Zhou, G. Talut, G. Brauer, W. Skorupa, J. Fassbender, The effect of flash lamp annealing on Fe implanted ZnO single crystals, J. Appl. Phys. 101 (2007) art. 033906 (4 pp).

DOI: 10.1063/1.2427103

Google Scholar

[60] K. Saarinen, T. Laine, S. Kuisma, J. Nissilä, P. Hautojärvi, L. Dobrzynski, J.M. Baranowski, K. Pakula, R. Stepniewski, M. Wojdak, A. Wysmolek, T. Suski, M. Leszczynski, I. Grzegory, S. Porowski, Observation of native Ga vacancies in GaN by positron annihilation, Phys. Rev. Lett. 79 (1997).

DOI: 10.1103/physrevlett.79.3030

Google Scholar

[61] M. Roever, J. Malindretos, A. Bedoya-Pinto, Angela Rizzi, Tracking defect-induced ferromagnetism in GaN: Gd, Phys. Rev. B 84 (2011) art. 081201(R) (4 pp).

DOI: 10.1103/physrevb.84.081201

Google Scholar

[62] X.L. Yang, W.X. Zhu, C.D. Wang, H. Fang, T.J. Yu, Z.J. Yang, G.Y. Zhang, X.B. Qin, R.S. Yu, B.Y. Wang, Positron annihilation in (Ga, Mn)N: A study of vacancy-type defects, Appl. Phys. Lett. 94 (2009) art. 151907 (3 pp).

DOI: 10.1063/1.3120267

Google Scholar

[63] N. Kumar, D. Sanyal, A. Sundaresan, Defect induced ferromagnetism in MgO nanoparticles studied by optical and positron annihilation spectroscopy, Chem. Phys. Lett. 477 (2009) 360-364.

DOI: 10.1016/j.cplett.2009.07.037

Google Scholar

[64] D.Q. Gao, J.Y. Li, Z.X. Li, Z.H. Zhang, J. Zhang, H.G. Shi, D.S. Xue, Defect-mediated magnetism in pure CaO nanopowders, J. Phys. Chem. C 114 (2010) 11703-11707.

DOI: 10.1021/jp911957j

Google Scholar

[65] L. Li, S. Prucnal, S.D. Yao, K. Potzger, W. Anwand, A. Wagner, S.Q. Zhou, Rise and fall of defect induced ferromagnetism in SiC single crystals, Appl. Phys. Lett. 98 (2011) art. 222508 (3 pp).

DOI: 10.1063/1.3597629

Google Scholar

[66] Y. Liu, G. Wang, S.C. Wang, J.H. Yang, L.A. Chen, X.B. Qin, B. Song, B.Y. Wang, X.L. Chen, Defect-induced magnetism in neutron irradiated 6H-SiC single crystals, Phys. Rev. Lett. 106 (2011) art. 087205 (4 pp).

DOI: 10.1103/physrevlett.106.087205

Google Scholar

[67] A. Dupasquier, A.P. Mills, Jr . (Eds. ), Positron Spectroscopy of Solids, IOS, Amsterdam, (1995).

Google Scholar

[68] R. Krause-Rehberg, H.S. Leipner (Eds. ), Positron Annihilation in Semiconductors – Defect Studies, Springer, Berlin, (1999).

DOI: 10.1007/978-3-662-03893-2_8

Google Scholar

[69] W. Anwand, G. Brauer, M. Butterling, H. -R. Kissener, A. Wagner, Design and Construction of a slow positron beam for solid and surface investigations, (see article in this book).

DOI: 10.4028/www.scientific.net/ddf.331.25

Google Scholar

[70] R. Krause-Rehberg, M. Jungmann, A. Krille, B. Werlich, A. Pohl, W. Anwand, G. Brauer, M. Butterling, H. Büttig, K. M. Kosev, J. Teichert, A. Wagner, T. E. Cowan, Use of superconducting linacs for positron generation: the EPOS system at the Forschungszentrum Dresden-Rossendorf (FZD), J. Phys.: Conf. Ser. 262 (2011).

DOI: 10.1088/1742-6596/262/1/012003

Google Scholar

[71] Information at: http: /www. hzdr. de.

Google Scholar