Applications of Positron Annihilation Spectroscopy to Life Science

Abstract:

Article Preview

Positron annihilation spectroscopy (PAS) is a novel method that can provide molecular-level information about complex biological and macromolecular structure in a manner which is different, but complementary, to conventional medical and biochemical research methodology. Positron annihilation lifetime spectroscopy (PALS) and Doppler broadening energy spectroscopy (DBES), coupled with a slow positron beam have been extensively applied to the life science research recently. These techniques provide new information about the atomic and molecular level free-volume and void sizes, and their distributions 0.1 nm to a few nm, molecular bonding, structures at depth-layers, and phase transitions. This paper is to review recent research on positron annihilation spectroscopy applied to the area of life science and also focus on current bioscience-related work in the positron group at the University of MissouriKansas City (UMKC).

Info:

Periodical:

Edited by:

B.N. Ganguly and G. Brauer

Pages:

275-293

Citation:

H. M. Chen et al., "Applications of Positron Annihilation Spectroscopy to Life Science", Defect and Diffusion Forum, Vol. 331, pp. 275-293, 2012

Online since:

September 2012

Export:

Price:

$38.00

[1] P.A.M. Dirac, Annihilation of electrons and protons, Proc. Cambridge Philos. Soc. 26 (1930) 361-375.

[2] C.D. Anderson, The positive electron, Phys. Rev. 43 (1933) 491-494.

[3] W.H. Furry, J.R. Oppenheimer, The theory of the electron and the positive, Phys. Rev. 45 (1934) 245-262.

[4] G.D. Cole, W.W. Walker, Positron annihilation in liquid crystals, J. Chem. Phys. 42 (1965) 1692-1694.

[5] S.Y. Chuang, S.J. Tao, Positron annihilation in amino acids and proteins, J. Phys. Chem. 78 (1974) 1261-1265.

[6] J.C. Glass, P.L. McMahon, G. Graf, Positron annihilation in ribonuclease, Phys. Lett. A 71A (1979) 292-294.

[7] D.R. Gustafson, Positronium formation in muscle. An investigation of the structure of cell water, Biophys. J. 10 (1970) 316-322.

[8] K.P. Singh, Positron annihilation studies in biophysical systems, in: P.C. Jain, R.M. Singru (Eds. ), Positron Annihilation, South Asian Publ. Pvt. Ltd. India, 1980, pp.145-162.

[9] A. Dupasquier, J.A.P. Mills, (Eds. ), Positron Spectroscopy of Solids, IOS Press, Amsterdam, (1995).

[10] D.M. Schrader, Y.C. Jean, (Eds. ), Positron and Positronium Chemistry, Elsevier, Amsterdam, (1988).

[11] Y.C. Jean, P.E. Mallon, D.M. Schrader, (Eds. ), Principles and Applications of Positron & Positronium Chemistry, World Scientific Publishing, Singapore, (2003).

[12] Y.C. Jean, H. Chen, G. Liu, J.E. Gadzia, Life science research using positron annihilation spectroscopy: UV-irradiated mouse skin, Radiat. Phys. Chem. 76 (2006) 70-75.

DOI: https://doi.org/10.1016/j.radphyschem.2006.03.008

[13] Y.C. Jean, Y. Li, G. Liu, H. Chen, J. Zhang, J.E. Gadzia, Applications of slow positrons to cancer research: Search for selectivity of positron annihilation to skin cancer, Appl. Surf. Sci. 252 (2006) 3166-3171.

DOI: https://doi.org/10.1016/j.apsusc.2005.08.101

[14] G. Liu, H. Chen, L. Chakka, M. -L. Cheng, J.E. Gadzia, R. Suzuki, T. Ohdaira, N. Oshima, Y.C. Jean, Further search for selectivity of positron annihilation in the skin and cancerous systems, Appl. Surf. Sci. 255 (2008) 115-118.

DOI: https://doi.org/10.1016/j.apsusc.2008.05.241

[15] G. Liu, H. Chen, L. Chakka, J.E. Gadzia, Y.C. Jean, Applications of positron annihilation to dermatology and skin cancer, Phys. Status Solidi C 4 (2007) 3912-3915.

DOI: https://doi.org/10.1002/pssc.200675736

[16] S.H. Yang, C. Ballmann, C.A. Quarles, Positron spectroscopy investigation of normal brain section and brain section with glioma derived from a rat glioma model, AIP Conf. Proc. 1099 (2009) 948-951.

DOI: https://doi.org/10.1063/1.3120199

[17] M.N. Chandrashekara, C. Ranganathaiah, Chemical and photochemical degradation of human hair: A free-volume microprobe study, J. Photochem. Photobiol., B 101 (2010) 286-294.

DOI: https://doi.org/10.1016/j.jphotobiol.2010.07.014

[18] T. Burns, S. Breathnach, N. Cox, C. Griffiths, (Eds. ), Rook's Textbook of Dermatology, Blackwell Science Publishing, Boston, (2004).

[19] P.J. Schultz, K.G. Lynn, Interaction of positron beams with surfaces, thin films, and interfaces, Rev. Mod. Phys. 60 (1988) 701-779.

DOI: https://doi.org/10.1103/revmodphys.60.701

[20] P. Coleman, (Ed. ), Positron beams and their applications, World Scientific Publishing, Singapore, (2000).

[21] Y.C. Jean, Comments on the paper Can positron annihilation lifetime spectroscopy measure the free-volume hole size distribution in amorphous polymers?, Macromolecules 29 (1996) 5756-5757.

DOI: https://doi.org/10.1021/ma960085h

[22] Y.C. Jean, R. Zhang, H. Cao, J. -P. Yuan, C. -M. Huang, B. Nielsen, P. Asoka-Kumar, Glass transition of polystyrene near the surface studied by slow-positron-annihilation spectroscopy, Phys. Rev. B: Condens. Matter 56 (1997) R8459-R8462.

DOI: https://doi.org/10.1103/physrevb.56.r8459

[23] H. Chen, R. Zhang, Y. Li, J. Zhang, Y.C. Wu, T.C. Sandreczki, P.E. Mallon, R. Suzuki, T. Ohdaira, X. Gu, T. Nguyen, Y.C. Jean, Durability and free volume in polymeric coatings studied by positron annihilation spectroscopy, Mater. Sci. Forum 445-446 (2004).

DOI: https://doi.org/10.4028/www.scientific.net/msf.445-446.274

[24] P. Kirkegaard, N.J. Pedersen, M. Eldrup, M. Risoe, PATFIT-88: a data-processing system for positron annihilation spectra on mainframe and personal computers, Risoe Natl. Lab., 1989, p.132.

[25] S.J. Tao, Positronium annihilation in molecular substances, J. Chem. Phys. 56 (1972) 5499-5510.

[26] M. Eldrup, D. Lightbody, J.N. Sherwood, The temperature dependence of positron lifetimes in solid pivalic acid, Chem. Phys. 63 (1981) 51-58.

DOI: https://doi.org/10.1016/0301-0104(81)80307-2

[27] H. Nakanishi, S.J. Wang, Y.C. Jean, Microscopic surface tension studied by positron annihilation, in: S.C. Sharma (Ed. ), International Symposium on Positron Annihilation Studies of Fluids, World Scientific Publishing, 1988, pp.292-298.

[28] K. Ito, H. Nakanishi, Y. Ujihira, Extension of the Equation for the Annihilation Lifetime of ortho-Positronium at a Cavity Larger than 1 nm in Radius, J. Phys. Chem. B 103 (1999) 4555-4558.

DOI: https://doi.org/10.1021/jp9831841

[29] T.L. Dull, W.E. Frieze, D.W. Gidley, J.N. Sun, A.F. Yee, Determination of Pore Size in Mesoporous Thin Films from the Annihilation Lifetime of Positronium, J. Phys. Chem. B 105 (2001) 4657-4662.

DOI: https://doi.org/10.1021/jp004182v

[30] Y.C. Jean, Positron annihilation spectroscopy for chemical analysis: a novel probe for microstructural analysis of polymers, Microchem. J. 42 (1990) 72-102.

DOI: https://doi.org/10.1016/0026-265x(90)90027-3

[31] A. Boegershausen, S.J. Pas, A.J. Hill, H. Koller, Drug release from self-assembled inorganic-organic hybrid gels and gated porosity detected by positron annihilation lifetime spectroscopy, Chem. Mater. 18 (2006) 664-672.

DOI: https://doi.org/10.1021/cm051859o

[32] H. Koller, A. Bogershausen, G. Paul, S.J. Pas, M. Schonhoff, A.J. Hill, Self-assembled inorganic-organic hybrid gels for controlled drug delivery: Synthesis, pore anomalies, and particle engineering, 229th ACS National Meeting, 2005, pp. IEC-161.

[33] H. Mimachi, Y. Akiyama, S. Takeda, Y. Izumi, Y. Honda, S. Nishijima, Analysis of swelling process of biopolymer gel by positron annihilation lifetime measurement and differential scanning calorimetry, Radioisotopes 55 (2006) 525-531.

DOI: https://doi.org/10.3769/radioisotopes.55.525

[34] E. Mume, D.E. Lynch, A. Uedono, S.V. Smith, Investigating the binding properties of porous drug delivery systems using nuclear sensors (radiotracers) and positron annihilation lifetime spectroscopy - Predicting conditions for optimum performance, Dalton Trans. 40 (2011).

DOI: https://doi.org/10.1039/c0dt01499k

[35] T. Zhou, J. Yue, Y. Wang, B. Huang, Positron annihilation in gelatin macromolecules, Huaxue Wuli Xuebao 17 (2004) 729-734.

[36] J. Yue, B.X. Huang, T. Zhou, Y. Wang, S.W. Liu, Y.H. Zhang, Positron annihilation lifetime spectrum as a probe for analyzing the role of gelatin in governing growth of nanosized silver halide particles, Imaging Sci. J. 52 (2004) 41-47.

DOI: https://doi.org/10.1179/136821904225011546

[37] Y. Li, R. Zhang, H. Chen, J. Zhang, R. Suzuki, T. Ohdaira, M.M. Feldstein, Y.C. Jean, The depth profile of free volume in drug delivery polymers studied by positron annihilation spectroscopy, Mater. Sci. Forum 445-446 (2004) 319-321.

DOI: https://doi.org/10.4028/www.scientific.net/msf.445-446.319

[38] Y. Li, R. Zhang, H. Chen, J. Zhang, R. Suzuki, T. Ohdaira, M.M. Feldstein, Y.C. Jean, Depth profile of free volume in a mixture and copolymers of poly(N-vinyl-pyrrolidone) and poly(ethylene glycol) studied by positron annihilation spectroscopy, Biomacromolecules 4 (2003).

DOI: https://doi.org/10.1021/bm034292i

[39] E. Pamula, E. Dryzek, P. Dobrzynski, Hydrolytic degradation of poly(L-lactide-co-glycolide) studied by positron annihilation lifetime spectroscopy and other techniques, Acta Phys. Pol., A 110 (2006) 631-640.

DOI: https://doi.org/10.12693/aphyspola.110.631

[40] E. Pamula, E. Dryzek, Structural changes in surface-modified polymers for medical applications, Acta Phys. Pol., A 113 (2008) 1485-1493.

DOI: https://doi.org/10.12693/aphyspola.113.1485

[41] R. Pietrzak, J. Muszynska, A. Kajdas, Spectra of positrons lifetimes in choose gel drugs, Acta Phys. Pol., A 110 (2006) 659-665.

DOI: https://doi.org/10.12693/aphyspola.110.659

[42] K. Pintye-Hodi, G. Regdon, I. Eros, K. Suevegh, T. Marek, I. Kery, R. Zelko, Metolose-PEG interaction as seen by positron annihilation spectroscopy, Int. J. Pharm. 313 (2006) 66-71.

DOI: https://doi.org/10.1016/j.ijpharm.2006.01.025

[43] V. Szente, K. Suvegh, T. Marek, R. Zelko, Prediction of the stability of polymeric matrix tablets containing famotidine from the positron annihilation lifetime distributions of their physical mixtures, J. Pharm. Biomed. Anal. 49 (2009) 711-714.

DOI: https://doi.org/10.1016/j.jpba.2009.01.001

[44] G. Dlubek, M.Q. Shaikh, K. Raetzke, J. Pionteck, M. Paluch, F. Faupel, Subnanometre size free volumes in amorphous Verapamil hydrochloride: A positron lifetime and PVT study through Tg in comparison with dielectric relaxation spectroscopy, Eur. J. Pharm. Sci. 41 (2010).

DOI: https://doi.org/10.1016/j.ejps.2010.07.007

[45] B. Szabo, K. Suevegh, R. Zelko, Effect of storage on microstructural changes of Carbopol polymers tracked by the combination of positron annihilation lifetime spectroscopy and FT-IR spectroscopy, Int. J. Pharm. 416 (2011) 160-163.

DOI: https://doi.org/10.1016/j.ijpharm.2011.06.028

[46] R. Zelko, K. Suvegh, S. Marton, I. Racz, Effects of storage conditions on the free volume of polyvinylpyrrolidone: comparison of positron lifetime data with the tensile strength of tablets, Pharm. Res. 17 (2000) 1030-1032.

DOI: https://doi.org/10.1023/a:1007599826269

[47] R. Zelko, K. Suevegh, Correlation between the release characteristics of theophylline and the free volume of polyvinylpyrrolidone, Eur. J. Pharm. Sci. 24 (2005) 351-354.

DOI: https://doi.org/10.1016/j.ejps.2004.11.009

[48] R. Zelko, K. Suvegh, The effect of physical ageing on the structural behavior of amorphous polymers, Acta Pharm. Hung. 73 (2003) 46-50.

[49] R. Zelko, A. Orban, K. Suevegh, Tracking of the physical ageing of amorphous pharmaceutical polymeric excipients by positron annihilation spectroscopy, J. Pharm. Biomed. Anal. 40 (2006) 249-254.

DOI: https://doi.org/10.1016/j.jpba.2005.07.014

[50] R. Zelko, K. Suvegh, Comparison of the enthalpy recovery and free volume of polyvinylpyrrolidone during anomalous glassy to rubbery transition, Eur. J. Pharm. Sci. 21 (2004) 519-523.

DOI: https://doi.org/10.1016/j.ejps.2003.11.013

[51] R. Zelko, D. Kiss, K. Suvegh, Effects of physical ageing on polymer structure and function - a pharmaceutical approach, in: L.B. Albertov (Ed. ), Polymer Degradation and Stability Research Developments, Nova Science Publishers, Inc., 2007, pp.283-299.

[52] M.F.F. Marques, P.M. Gordo, C.L. Gil, Z. Kajcsos, M.H. Gil, M.J. Mariz, L.A.P. de, Positron lifetime studies in vinyl polymers of medical importance, Radiat. Phys. Chem. 68 (2003) 485-488.

DOI: https://doi.org/10.1016/s0969-806x(03)00213-5

[53] U.M.V. Deepa, C. Ranganathaiah, Influence of spoliation in poly(2-hydroxy ethyl methacrylate) soft contact lens on its free volume and optical transparency, J. Mater. Sci.: Mater. Med. 19 (2008) 1355-1361.

DOI: https://doi.org/10.1007/s10856-007-3267-3

[54] M.C. Thimmegowda, H.B.R. Kumar, C. Ranganathaiah, Water diffusion in a soft contact lens polymer and its tolerance to UV radiation studied by positron lifetime technique, J. Appl. Polym. Sci. 92 (2004) 1355-1366.

DOI: https://doi.org/10.1002/app.20131

[55] J.J. Singh, A. Eftekhari, B.T. Upchurch, K.S. Burns, Free volume in contact lens polymers, in: Y.C. Jean (Ed. ), Positron and Positronium Chemistry, Int. Workshop, 3rd, World Scientific Publishing, 1990, pp.54-61.

[56] J.J. Singh, A. Eftekhari, B.T. Upchurch, K.S. Burns, An investigation of microstructural characteristics of contact-lens polymers, Natl. Aeronaut. Space Adm., 1990, pp.1-12.

[57] M.C. Thimmegowda, P.M. Sathyanarayana, G. Shariff, M.B. Ashalatha, R. Ramani, C. Ranganathaiah, A free volume microprobe study of water sorption in a contact lens polymer, J. Biomater. Sci., Polym. Ed. 13 (2002) 1295-1311.

DOI: https://doi.org/10.1163/15685620260449705

[58] M.C. Thimmegowda, P.M. Sathyanarayana, G. Shariff, M.B. Ashalatha, R. Ramani, C. Ranganathaiah, Water sorption studies in a RGP contact lens polymer paraperm by positron lifetime technique, Phys. Status Solidi A 193 (2002) 257-270.

DOI: https://doi.org/10.1002/1521-396x(200209)193:2<257::aid-pssa257>3.0.co;2-8

[59] R. Ramani, J.K.S. Parihar, C. Ranganathaiah, P. Awasthi, S. Alam, G.N. Mathur, Free volume study on calcification process in an intraocular lens after cataract surgery, J. Biomed. Mater. Res., Part B 75B (2005) 221-227.

DOI: https://doi.org/10.1002/jbm.b.30303

[60] M.I. Oshtrakh, E.A. Kopelyan, V.A. Semenkin, A.B. Livshits, V.E. Krylova, A.A. Kozlov, Positron annihilation and Mössbauer effect studies of iron-dextran complexes, Mater. Sci. Forum 105-110 (1992) 1679-1682.

DOI: https://doi.org/10.4028/www.scientific.net/msf.105-110.1679

[61] M.I. Oshtrakh, E.A. Kopelyan, V.A. Semionkin, A.B. Livshits, V.E. Krylova, A.A. Kozlov, Mössbauer and positron annihilation studies of pharmaceutically important iron-dextran complexes, Nucl. Instrum. Methods Phys. Res., Sect. B B76 (1993).

DOI: https://doi.org/10.1016/0168-583x(93)95252-z

[62] M.I. Oshtrakh, E.A. Kopelyan, V.A. Semionkin, Mössbauer and positron annihilation study of oxyhemoglobin exposed to g-rays and electrons, Radiat. Phys. Chem. 47 (1996) 399-403.

DOI: https://doi.org/10.1016/0969-806x(95)00124-g

[63] H.E. Yang, J.Y.C. Jean, Correlations between gas permeation and free-volume hole properties of medical plastics. Polyesters, Annu. Tech. Conf. - Soc. Plast. Eng. 55 (1997) 2860-2862.

[64] K. Ratzke, M. Wiegemann, M.Q. Shaikh, S. Harms, R. Adelung, W. Egger, P. Sperr, Open volume in bioadhesive detected by positron annihilation lifetime spectroscopy, Acta Biomater 6 (2010) 2690-2694.

DOI: https://doi.org/10.1016/j.actbio.2009.12.039

[65] E. Dryzek, K. Cholewa-Kowalska, E. Pamula, Positron annihilation in bioactive glass/poly(glycolide-co-L-lactide) composites, Nukleonika 55 (2010) 79-83.

[66] J. Kleczewska, D.M. Bielinski, E. Dryzek, A. Piatkowska, Application of positron annihilation lifetime spectroscopy in studies of dental composites based on dimethacrylate resins, in: K. Pielichowski (Ed. ), Modern Polymeric Materials for Environmental Applications, Poland, 2010, pp.143-150.

[67] G. Brauer, A.V. Volynskaya, B.P. Molin, A.Y. Skripkin, V.P. Shantarovich, Micellization of sodium dodecylsulfate in aqueous solutions studied by positron annihilation, Zentralinstitut für Kernforschung 1981, pp.1-6.

[68] E.I.H. Chow, S.Y. Chuang, P.K. Tseng, Detection of a phase transition in red cell membranes using positronium as a probe, Biochim. Biophys. Acta Biomembr. 646 (1981) 356-359.

DOI: https://doi.org/10.1016/0005-2736(81)90344-8

[69] H. Costabal, PAL study of anesthetics in a model membrane, Contrib. Cient. Tecnol. 15 (1984) 19-24.

[70] J.C. Glass, G. Graf, H. Costabal, D.H. Ewert, L. English, Positrons in biomolecular systems. II: Membranes, in: P.G. Coleman, S.C. Sharma, L.M. Diana (Eds. ), Positron Annihilation, Proc. Int. Conf., 1982, pp.930-931.

[71] E.D. Handel, G. Graf, J.C. Glass, Temperature dependence of positron lifetimes in carbonic anhydrase, J. Am. Chem. Soc. 98 (1976) 2360-2361.

DOI: https://doi.org/10.1021/ja00424a073

[72] E.D. Handel, G. Graf, J.C. Glass, Macromolecular conformation in solution. Study of carbonic anhydrase by the positron annihilation technique, Biophys. J. 32 (1980) 697-704.

DOI: https://doi.org/10.1016/s0006-3495(80)85010-7

[73] Y.C. Jean, H.J. Ache, Studies of molecular association in biological systems by positron annihilation techniques, J. Am. Chem. Soc. 99 (1977) 1623-1625.

DOI: https://doi.org/10.1021/ja00447a056

[74] Y.C. Jean, A.J. Hancock, Positron lifetime studies on phase transitions of phospholipids, J. Chem. Phys. 77 (1982) 5836-5839.

[75] S. Sung, T. Mahmood, Y.C. Jean, M.F. Lou, D. Borchman, Sensitivity of positronium annihilation on phase transition of phospholipids, in: Y.C. Jean (Ed. ), Positron Positronium Chem., Int. Workshop, World Scientific Publishing, 1990, pp.454-459.

[76] S. Baluch, J. Cirak, P. Balgavy, A biomembrane phase transition studied by the positron annihilation lifetime method, Stud. Biophys. 136 (1990) 65-70.

[77] Y. Akiyama, Y. Shibahara, S. -I. Takeda, Y. Izumi, Y. Honda, S. Tagawa, S. Nishijima, Analysis of swelling process of protein by positron annihilation lifetime spectroscopy and differential scanning calorimetry, J. Polym. Sci., Part B: Polym. Phys. 45 (2007).

DOI: https://doi.org/10.1002/polb.21188

[78] G. Graf, J.C. Glass, D.H. Ewert, B.A. Mayo, Positrons in biomolecular systems. I: Proteins, in: P.G. Coleman, S.C. Sharma, L.M. Diana (Eds. ), Positron Annihilation, Proc. Int Conf., North-Holland, 1982, pp.928-929.

[79] R.B. Gregory, K.J. Chai, W. Su, Positron annihilation lifetime studies of protein hydration, Mater. Sci. Forum 105-110 (1992) 1577-1580.

DOI: https://doi.org/10.4028/www.scientific.net/msf.105-110.1577

[80] R.B. Gregory, K.J. Chai, A positron annihilation lifetime study of protein hydration - evidence for a glass transition, Journal de Physique IV 3 (1993) 305-310.

DOI: https://doi.org/10.1051/jp4:1993449

[81] R.B. Gregory, K.J. Chai, A positron annihilation lifetime study of protein hydration, Biochem. Soc. Trans. 21 (1993) 478S.

DOI: https://doi.org/10.1042/bst021478s

[82] K. Heremans, Protein dynamics: Hydration and cavities, Braz. J. Med. Biol. Res. 38 (2005) 1157-1165.

[83] S. Siles, G. Moya, X.H. Li, J. Kansy, P. Moser, Positron annihilation lifetime measurements in collagen biopolymer, Mater. Res. Soc. Symp. Proc. 530 (1998) 33-36.

DOI: https://doi.org/10.1557/proc-530-33

[84] S. Siles, G. Moya, A.S. Ahmed, J. Kansy, Positron annihilation study of collagen biopolymer: Comparison between the three-component and the elastic thermalization lifetime analyses, Mater. Sci. Forum 363-365 (2001) 331-333.

DOI: https://doi.org/10.4028/www.scientific.net/msf.363-365.331

[85] J.B. Ubbink, Structural advances in the understanding of carbohydrate glasses, in: S. Kasapis, I.T. Norton, J.B. Ubbink (Eds. ), Modern Biopolymer Science, Elsevier, 2009, pp.277-293.

DOI: https://doi.org/10.1016/b978-0-12-374195-0.00009-4

[86] D. Kilburn, J. Claude, R. Mezzenga, G. Dlubek, A. Alam, J. Ubbink, Water in glassy carbohydrates: Opening it up at the nanolevel, J. Phys. Chem. B 108 (2004) 12436-12441.

DOI: https://doi.org/10.1021/jp048774f

[87] D. Kilburn, S. Townrow, V. Meunier, R. Richardson, A. Alam, J. Ubbink, Organization and mobility of water in amorphous and crystalline trehalose, Nat Mater 5 (2006) 632-635.

DOI: https://doi.org/10.1038/nmat1681

[88] S. Townrow, D. Kilburn, A. Alam, J. Ubbink, Molecular packing in amorphous carbohydrate matrixes, J Phys Chem B 111 (2007) 12643-12648.

DOI: https://doi.org/10.1021/jp074884l

[89] K. Suvegh, F. Mohos, A. Vertes, Investigation of aqueous solutions of sucrose, D-glucose and D-fructose with positron lifetime spectroscopy, Acta Aliment. 20 (1991) 3-10.

[90] M.K. Pickard, F.A. Smith, Possible evidence of solute-solute interactions in binary aqueous solutions containing electron-affinic and positron-affinic scavengers, in: S.C. Sharma (Ed. ), Int. Symp. Positron Annihilation Stud. Fluids, World Sci., 1988, pp.404-407.

[91] K. Suvegh, A. Domjan, A. Vertes, Positron lifetime study of several chiral materials in aqueous solution, J. Radioanal. Nucl. Chem. 211 (1996) 203-210.

DOI: https://doi.org/10.1007/bf02036274

[92] M. Tsumbu, G. Yav, K. Malu, L.O. Rostha, C. Dauwe, Study of hemin in water/ethylene glycol mixtures by positron annihilation spectroscopy, Mater. Sci. Forum 105-110 (1992) 1657-1660.

DOI: https://doi.org/10.4028/www.scientific.net/msf.105-110.1657

[93] P. Sane, E. Salonen, E. Falck, J. Repakova, F. Tuomisto, J.M. Holopainen, I. Vattulainen, Probing biomembranes with positrons, J. Phys. Chem. B 113 (2009) 1810-1812.

DOI: https://doi.org/10.1021/jp809308j

[94] F.H. Hsu, B.G. Wen, J.F.R. Kuck, N.T. Yu, Positron annihilation studies of age-induced changes in animal lenses, Phys. Status Solidi A 102 (1987) 571-575.

DOI: https://doi.org/10.1002/pssa.2211020214

[95] P. Sane, F. Tuomisto, S.K. Wiedmer, T. Nyman, I. Vattulainen, J.M. Holopainen, Temperature-induced structural transition in-situ in porcine lens - changes observed in void size distribution, Biochim Biophys Acta 1798 (2010) 958-965.

DOI: https://doi.org/10.1016/j.bbamem.2010.01.011

[96] C.Y. Yin, D.L. Guo, T. Xi, X.X. Xu, Q.C. Gu, Studies on structural features of human tumor necrosis factor, Nucl. Sci. Tech. 8 (1997) 218-220.

[97] M.M. Elias, A.H. Al-Mashhadani, Z.T. Al-Shiebani, Temperature dependence of microstructure of biological tissues probed via the positronium method, Dirasat: Pure Sci. 28 (2001) 240-244.

[98] M.N. Chandrashekara, C. Ranganathaiah, Free volume size distribution in some natural polymers, AIP Conf. Proc. 1349 (2011) 228-229.

[99] M.N. Chandrashekara, C. Ranganathaiah, Diffusion of permanent liquid dye molecules in human hair investigated by positron lifetime spectroscopy, Colloids Surf., B 69 (2009) 129-134.

DOI: https://doi.org/10.1016/j.colsurfb.2008.11.014

[100] M.N. Chandrashekara, C. Ranganathaiah, A study of dye molecule diffusion in human hair using positron lifetime spectroscopy, Phys. Status Solidi C 6 (2009) 2407-2410.

DOI: https://doi.org/10.1002/pssc.200982071

[101] Y. Itoh, A. Shimazu, Y. Sadzuka, T. Sonobe, S. Itai, Novel method for stratum corneum pore size determination using positron annihilation lifetime spectroscopy, Int. J. Pharm. 358 (2008) 91-95.

DOI: https://doi.org/10.1016/j.ijpharm.2008.02.016

[102] T. Lu, Change in microstructure of plant seeds induced by low energy ion implantation, Wuli 31 (2002) 555-557.

[103] T. Lu, W.Z. Yu, H.Y. Zhou, G.H. Zhu, X.F. Wang, W. Chao, Positron annihilation study on surface structure of biological samples implanted by ions with low energy, Chin. Phys. (Beijing) 10 (2001) 145-147.

DOI: https://doi.org/10.1088/1009-1963/10/2/312

[104] T. Lu, A study of mechanism of biological effect on plants caused by ion implantation, Proceedings of the International Conference on Frontiers of Physics, World Scientific Publishing, 1997, pp.135-138.

[105] G. Roudaut, G. Duplatre, Positronium as a probe in natural polymers: decomposition in starch, Phys. Chem. Chem. Phys. 11 (2009) 9556-9561.

DOI: https://doi.org/10.1039/b911949c

[106] M.A. Ali, H.F. Mohamed, W.M. Amer, Biophysical measurements of lead in some bioindicator plants, Rom. J. Biophys. 18 (2008) 57-66.

[107] L. Torrisi, M.C. La, G. Foti, Doppler-broadening of positron annihilation in a biological environment, Q. J. Nucl. Med. 41 (1997) 18-24.

[108] P. Sane, S. Kilpelainen, F. Tuomisto, 4-channel digital positron lifetime spectrometer for studying biological samples, Mater. Sci. Forum 607 (2009) 254-256.

DOI: https://doi.org/10.4028/www.scientific.net/msf.607.254

[109] W.S. Hung, G.M. De, S.H. Huang, K. -R. Lee, Y.C. Jean, J. -Y. Lai, Characterizing free volumes and layer structures in asymmetric thin-film polymeric membranes in the wet condition using the variable monoenergy slow positron beam, Macromolecules 43 (2010).

DOI: https://doi.org/10.1021/ma100559u

[110] N. Oshima, B.E. O'Rourke, R. Kuroda, R. Suzuki, H. Watanabe, S. Kubota, K. Tenjinbayashi, A. Uedono, N. Hayashizaki, Slow positron beam apparatus for surface and subsurface analysis of samples in air, Appl. Phys. Express 4 (2011) 066701.

DOI: https://doi.org/10.1143/apex.4.066701

[111] I.M. Freeberg, A.Z. Eisen, K. Wolf, K.F. Ausen, L.A. Goldsmith, S.I. Katz, I.B. Eitzpatrick, (Eds. ), Fritzpatrick's Dermatology in General Medicine, McGraw-Hill Professional, (2003).

[112] A. Van Veen, H. Schut, J. de Vries, R.A. Hakvoort, M.R. IJpma, Analysis of positron profiling data by means of VEPFIT, in: P.J. Schultz, G. Massoumi, P.J. Simpson (Eds. ), AIP Conf. Proc., New York, 1990, pp.171-196.

DOI: https://doi.org/10.1063/1.40182