Surface Orientation Influence on the Langmuir Evaporation Characteristics of GaAs Substrates

Article Preview

Abstract:

The dependences of congruent evaporation temperature Tc and the desorption activation energies of GaAs components on the substrate surface orientation are analyzed using Monte Carlo simulation. On the vicinal surfaces with the (111)A orientation at temperatures exceeding Tc, the metal droplets start to grow at step edges, and, with the (111)B orientation, the droplets nucleate randomly on the terraces. The droplet concentration on the (111)B surface is higher than that on the (111)A surface. The droplet-crystal interface roughness is different for (111)A and (111)B orientations. The Tc of (111)B surfaces is lower than that of (111)A surfaces. For both surface orientations, Tc decreases when the vicinal surface terrace width is shorter than the double gallium diffusion length. The gallium and arsenic desorption activation energies dependence on the vicinal surface misorientation is demonstrated. A sharp increase in the arsenic desorption rate is observed with an increase of the (111)A surface coating with liquid gallium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-26

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.V. Latyshev, A.L. Aseev, A.B. Krasilnikov, S.I. Stenin, Transformations on Clean Si(111) stepped surface during sublimation, Surf. Sci. 213 (1989) 157-169.

DOI: 10.1016/0039-6028(89)90256-2

Google Scholar

[2] K. Reyes, P. Smereka, D. Nothern, J.M. Millunchick, S. Bietti, C. Somaschini, S. Sanguinetti, C. Frigeri, A unified model of droplet epitaxy for compound semiconductor nanostructures: experiments and theory, Phys. Rev. B. 87 (2013) 165406.

DOI: 10.1103/physrevb.87.165406

Google Scholar

[3] C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, A.Morral, Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy, Phys. Rev. B 77 (2008) 155326.

DOI: 10.1103/physrevb.77.155326

Google Scholar

[4] Z.M. Wang, B.L. Liang, K.A. Sablon, G.J. Salamo, Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100), Appl. Phys. Lett. 90 (2007) 113120.

DOI: 10.1063/1.2713745

Google Scholar

[5] S. Li, J. Wu, Z. Wang, Z. Li, Y. Su, Z. Wu, Y. Jiang, G.J. Salamo, Thermal etching process of microscale pits on the GaAs(001) surface, Phys. Status Solidi RRL 6 (2012) 25-27.

DOI: 10.1002/pssr.201105482

Google Scholar

[6] C. Zhao, J. Li, Y. Yu, H. Ni, Z. Niu, X. Zhang, Observation of the in-plane spin-dephasing anisotropy in [111]-grown GaAs/AlGaAs quantum well, Appl. Phys. Lett. 104 (2014) 052411.

DOI: 10.1063/1.4864183

Google Scholar

[7] E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J.A. Töfflinger, A. Lochmann, A.I. Toropov, S.A. Moshchenko, D.V. Dmitriev, V.A. Haisler, D. Bimberg, Single-photon emission from InGaAs quantum dots grown on (111) GaAs, Appl. Phys. Lett 96 (2010) 093112.

DOI: 10.1063/1.3337097

Google Scholar

[8] M. Jo, T. Mano, M. Abbarchi, T. Kuroda, Y. Sakuma, K. Sakoda, Self-Limiting Growth of Hexagonal and Tri-angular Quantum Dots on (111)A, Cryst. Growth & Des. 12 (2012) 1411-1415.

DOI: 10.1021/cg201513m

Google Scholar

[9] M.S. Abrahams, C.J. Buiocchi, Etching of Dislocations on the Low-Index Faces of GaAs, J. Appl. Phys. 36 (1965) 2855-2863.

DOI: 10.1063/1.1714594

Google Scholar

[10] T. Takebe, M. Fujii, T. Yamamoto, K. Fujita, T. Watanabe, Orientation – dependent Ga surface diffusion in molecular beam epitaxy of GaAs on GaAs patterned substrates, J. Appl. Phys. 81 (1997) 7273-7281.

DOI: 10.1063/1.365548

Google Scholar

[11] C. Lou, G. Somorjai, Studies of the vaporization mechanism of gallium arsenide single crystals, J. Chem. Phys. 55 (1971) 4554-4565.

DOI: 10.1063/1.1676789

Google Scholar

[12] B. Goldshtein, D. Stozak, V. Ban, Langmuir evaporation from the (100), (111A) and (111B) faces of GaAs, Surf. Sci. 57 (1976) 733-740.

DOI: 10.1016/0039-6028(76)90358-7

Google Scholar

[13] S. Kanjanachuchai, C. Euaruksakul, Self-running Ga droplets on GaAs (111)A and (111)B surfaces, ACS Appl. Mater. Interfaces 5 (2013) 7709-7713.

DOI: 10.1021/am402455u

Google Scholar

[14] J.R. Arthur, Vapor pressures and phase equilibria in the Ga-As system, J. Phys. Chem. Solids 28 (1967) 2257-2267.

DOI: 10.1016/0022-3697(67)90251-x

Google Scholar

[15] J. Jian-yun Shen, C. Chatillon, Thermodynamic calculations of congruent vaporization in III–V systems; Applications to the In-As, Ga-As and Ga-In-As systems, J. Crystal Growth 106 (1990) 543-552.

DOI: 10.1016/0022-0248(90)90028-j

Google Scholar

[16] C. Chatillon, D. Chatain, Congruent vaporization of GaAs(s) and stability of Ga(l) droplets at the GaAs(s) surface, J. Cryst. Growth 151 (1995) 91-101.

DOI: 10.1016/0022-0248(95)00044-5

Google Scholar

[17] A. Zverev, C. Zinchenko, N. Shwartz, Z. Yanovitskaja, A Monte Carlo simulation of the processes of nanostructures growth: The time-scale event-scheduling algorithm, Nanotech. in Russia 4 (2009) 215-224.

DOI: 10.1134/s1995078009030094

Google Scholar

[18] N. Shwartz, M. Vasilenko, A. Nastovjak, I. Neizvestny, Concentric GaAs nanorings formation by droplet epitaxy – Monte Carlo simulation, Comput. Mat. Sci. 141 (2018) 91-100.

DOI: 10.1016/j.commatsci.2017.09.020

Google Scholar

[19] M. Vasilenko, I. Neizvestny, N. Shwartz, Formation of GaAs nanostructures by droplet epitaxy – Monte Carlo simulation, Comput. Mat. Sci. 102 (2015) 286-292.

DOI: 10.1016/j.commatsci.2015.02.032

Google Scholar

[20] A.A. Spirina, A.G. Nastovjak, N.L. Shwartz, Influence of GaAs substrates properties on the congruent evaporation temperature, J. of Phys.: Conf. Ser. 993 (2018) 012011.

DOI: 10.1088/1742-6596/993/1/012011

Google Scholar

[21] J. Tersoff, D.E. Jesson, W.X. Tang, Decomposition Controlled by Surface Morphology during Langmuir Evaporation of GaAs, Phys. Rev. Lett. 105 (2010) 035702.

DOI: 10.1103/physrevlett.105.035702

Google Scholar

[22] Yu.P. Khukhryanskii, L.N. Veremjanina, I.V. Nikishina, O.I. Sisoev, Kinetics of Langmuir evaporation of indium phosphide and arsenide components, J. Phys. Chem. 71 (1997) 870-874 (in rus.).

Google Scholar