[1]
A.V. Latyshev, A.L. Aseev, A.B. Krasilnikov, S.I. Stenin, Transformations on Clean Si(111) stepped surface during sublimation, Surf. Sci. 213 (1989) 157-169.
DOI: 10.1016/0039-6028(89)90256-2
Google Scholar
[2]
K. Reyes, P. Smereka, D. Nothern, J.M. Millunchick, S. Bietti, C. Somaschini, S. Sanguinetti, C. Frigeri, A unified model of droplet epitaxy for compound semiconductor nanostructures: experiments and theory, Phys. Rev. B. 87 (2013) 165406.
DOI: 10.1103/physrevb.87.165406
Google Scholar
[3]
C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, A.Morral, Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy, Phys. Rev. B 77 (2008) 155326.
DOI: 10.1103/physrevb.77.155326
Google Scholar
[4]
Z.M. Wang, B.L. Liang, K.A. Sablon, G.J. Salamo, Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100), Appl. Phys. Lett. 90 (2007) 113120.
DOI: 10.1063/1.2713745
Google Scholar
[5]
S. Li, J. Wu, Z. Wang, Z. Li, Y. Su, Z. Wu, Y. Jiang, G.J. Salamo, Thermal etching process of microscale pits on the GaAs(001) surface, Phys. Status Solidi RRL 6 (2012) 25-27.
DOI: 10.1002/pssr.201105482
Google Scholar
[6]
C. Zhao, J. Li, Y. Yu, H. Ni, Z. Niu, X. Zhang, Observation of the in-plane spin-dephasing anisotropy in [111]-grown GaAs/AlGaAs quantum well, Appl. Phys. Lett. 104 (2014) 052411.
DOI: 10.1063/1.4864183
Google Scholar
[7]
E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J.A. Töfflinger, A. Lochmann, A.I. Toropov, S.A. Moshchenko, D.V. Dmitriev, V.A. Haisler, D. Bimberg, Single-photon emission from InGaAs quantum dots grown on (111) GaAs, Appl. Phys. Lett 96 (2010) 093112.
DOI: 10.1063/1.3337097
Google Scholar
[8]
M. Jo, T. Mano, M. Abbarchi, T. Kuroda, Y. Sakuma, K. Sakoda, Self-Limiting Growth of Hexagonal and Tri-angular Quantum Dots on (111)A, Cryst. Growth & Des. 12 (2012) 1411-1415.
DOI: 10.1021/cg201513m
Google Scholar
[9]
M.S. Abrahams, C.J. Buiocchi, Etching of Dislocations on the Low-Index Faces of GaAs, J. Appl. Phys. 36 (1965) 2855-2863.
DOI: 10.1063/1.1714594
Google Scholar
[10]
T. Takebe, M. Fujii, T. Yamamoto, K. Fujita, T. Watanabe, Orientation – dependent Ga surface diffusion in molecular beam epitaxy of GaAs on GaAs patterned substrates, J. Appl. Phys. 81 (1997) 7273-7281.
DOI: 10.1063/1.365548
Google Scholar
[11]
C. Lou, G. Somorjai, Studies of the vaporization mechanism of gallium arsenide single crystals, J. Chem. Phys. 55 (1971) 4554-4565.
DOI: 10.1063/1.1676789
Google Scholar
[12]
B. Goldshtein, D. Stozak, V. Ban, Langmuir evaporation from the (100), (111A) and (111B) faces of GaAs, Surf. Sci. 57 (1976) 733-740.
DOI: 10.1016/0039-6028(76)90358-7
Google Scholar
[13]
S. Kanjanachuchai, C. Euaruksakul, Self-running Ga droplets on GaAs (111)A and (111)B surfaces, ACS Appl. Mater. Interfaces 5 (2013) 7709-7713.
DOI: 10.1021/am402455u
Google Scholar
[14]
J.R. Arthur, Vapor pressures and phase equilibria in the Ga-As system, J. Phys. Chem. Solids 28 (1967) 2257-2267.
DOI: 10.1016/0022-3697(67)90251-x
Google Scholar
[15]
J. Jian-yun Shen, C. Chatillon, Thermodynamic calculations of congruent vaporization in III–V systems; Applications to the In-As, Ga-As and Ga-In-As systems, J. Crystal Growth 106 (1990) 543-552.
DOI: 10.1016/0022-0248(90)90028-j
Google Scholar
[16]
C. Chatillon, D. Chatain, Congruent vaporization of GaAs(s) and stability of Ga(l) droplets at the GaAs(s) surface, J. Cryst. Growth 151 (1995) 91-101.
DOI: 10.1016/0022-0248(95)00044-5
Google Scholar
[17]
A. Zverev, C. Zinchenko, N. Shwartz, Z. Yanovitskaja, A Monte Carlo simulation of the processes of nanostructures growth: The time-scale event-scheduling algorithm, Nanotech. in Russia 4 (2009) 215-224.
DOI: 10.1134/s1995078009030094
Google Scholar
[18]
N. Shwartz, M. Vasilenko, A. Nastovjak, I. Neizvestny, Concentric GaAs nanorings formation by droplet epitaxy – Monte Carlo simulation, Comput. Mat. Sci. 141 (2018) 91-100.
DOI: 10.1016/j.commatsci.2017.09.020
Google Scholar
[19]
M. Vasilenko, I. Neizvestny, N. Shwartz, Formation of GaAs nanostructures by droplet epitaxy – Monte Carlo simulation, Comput. Mat. Sci. 102 (2015) 286-292.
DOI: 10.1016/j.commatsci.2015.02.032
Google Scholar
[20]
A.A. Spirina, A.G. Nastovjak, N.L. Shwartz, Influence of GaAs substrates properties on the congruent evaporation temperature, J. of Phys.: Conf. Ser. 993 (2018) 012011.
DOI: 10.1088/1742-6596/993/1/012011
Google Scholar
[21]
J. Tersoff, D.E. Jesson, W.X. Tang, Decomposition Controlled by Surface Morphology during Langmuir Evaporation of GaAs, Phys. Rev. Lett. 105 (2010) 035702.
DOI: 10.1103/physrevlett.105.035702
Google Scholar
[22]
Yu.P. Khukhryanskii, L.N. Veremjanina, I.V. Nikishina, O.I. Sisoev, Kinetics of Langmuir evaporation of indium phosphide and arsenide components, J. Phys. Chem. 71 (1997) 870-874 (in rus.).
Google Scholar