[1]
S.P. Badwal, M.J. Bannister, R.H.J. Hannink (Eds. ), Science and Technology of Zirconia V, Technomic Pub. Co., Lancaster, Pennsylvania, (1993).
Google Scholar
[2]
T.B. Massalski (Ed. ), Zirconia polymorphism. Binary Alloys Phase Diagrams, Second Edition, ASM International, Materials Park, Ohio 3 (1990) 2940-1.
Google Scholar
[3]
M. H. Yanagida, K. Koumoto, M. Miyayama, The Chemistry of Ceramics, 1st ed, John Wiley & Sons, Chicester, (1996).
Google Scholar
[4]
I.A. Yashchishyn, A.M. Korduban, V.V. Trachevskii, T.E. Konstantinova, I.A. Danilenko, G.K. Volkova, I.K. Noselev, XPS and ESR spectroscopy of ZrO2-Y2O3-Cr2O3 nanopowders, Functional Materials 17 (2010) 306−10.
DOI: 10.1016/j.apsusc.2010.05.046
Google Scholar
[5]
R.H.R. Castro, in: R.H.R. Castro, K. van Benthem (Eds. ) Sintering (Engineering Materials vol. 35), Springer Verlag, Berlin, Heidelberg, 2013, p.1–16.
Google Scholar
[6]
P. Hautojärvi, C. Corbel, Positron Spectroscopy of defects in metals and semiconductors, in: A.P. Mills, Jr., A. Dupasquier (Eds. ), Positron Spectroscopy of Solids Proc. Internat. School of Physics «Enrico Fermi», Course CXXV, IOS Press, Amsterdam, 1995, p.491.
Google Scholar
[7]
P.R. Guagliardo, E.R. Vance, Z. Zhang, J. Davis, J.F. Williams, S.N. Samarin, Positron annihilation lifetime studies of Nb-doped TiO2, SnO2, and ZrO2 , J. Am. Ceram. Soc. 95 (2012) 1727−31.
DOI: 10.1111/j.1551-2916.2012.05157.x
Google Scholar
[8]
M. Chakrabarti, D. Bhowmick, A. Sarkar, S. Chattopadhyay, S. Dechoudhury, D. Sanyal, A. Chakrabarti, Doppler broadening measurements of the electron-positron annihilation radiation in nanocrystalline ZrO2 , J. Mater. Sci. 40 (2005 5265−8.
DOI: 10.1007/s10853-005-0743-3
Google Scholar
[9]
Y. Yagi, S. Hirano, Y. Ujihira, M. Miyayama, Analysis of the sintering process of 2 mol % yttria-doped zirconia by positron annihilation lifetime measurements, J. Mater. Sci. Lett. 18 (1999) 205−7.
DOI: 10.4028/www.scientific.net/msf.255-257.433
Google Scholar
[10]
J.E. Garay, S.C. Glade, P. Asoka-Kumar, U. Anselmi-Tamburini, Z.A. Munir, Characterization of densified fully stabilized nanometric zirconia by positron annihilation spectroscopy, J. Appl. Phys. 99 (2006) 024313.
DOI: 10.1063/1.2163016
Google Scholar
[11]
J. Cizek, O. Melikhova, I. Prochazka, J. Kuriplach, R. Kuzel, G. Brauer, W. Anwand, T.E. Konstantinova, I.A. Danilenko, Defect studies of nanocrystalline zirconia powders and sintered ceramics, Phys. Rev. B 81 (2010) 024116.
DOI: 10.1103/physrevb.81.024116
Google Scholar
[12]
J. Cizek, O. Melikhova, J. Kuriplach, I. Prochazka, T.E. Konstantinova, I.A. Danilenko, Sintering of yttria-stabilized zirconia nanopowders studied by positron annihilation spectroscopy, Phys. Stat. Sol. C 6 (2009) 2582−4.
DOI: 10.1002/pssc.200982089
Google Scholar
[13]
O. Melikhova, J. Cizek, I. Prochazka, T.E. Konstantinova, I.A. Danilenko, Defect studies of yttria stabilized zirconia with chromia additive, Physics Procedia 35 (2012) 134–139.
DOI: 10.1016/j.phpro.2012.06.024
Google Scholar
[14]
I. Prochazka, J. Cizek, O. Melikhova, J. Kuriplach, W. Anwand, G. Brauer, T.E. Konstantinova, I. A. Danilenko, I. A. Yashchishyn, Defect behaviour in yttria-stabilised zirconia nanomaterials studied by positron annihilation techniques, in: B. N. Ganguly, G. Brauer (Eds, ), Near-Surface Depth Profiling of Solids by Mono-Energetic positrons, Defects and Diffusion Forum, Vol. 331, Trans. Tech. Pub., Zurich, 2012, pp, 181–99.
DOI: 10.4028/www.scientific.net/ddf.331.181
Google Scholar
[15]
I. Prochazka, J. Cizek, O. Melikhova, J. Kuriplach, T.E. Konstantinova, I.A. Danilenko, Positron annihilation study of yttria-stabilized zirconia nanopowders containing Cr2O3 additive, J. Phys.: Conf. Ser. 265 (2011) 012020.
DOI: 10.1088/1742-6596/265/1/012020
Google Scholar
[16]
C.M. Lederer, V.S. Shirley (Eds. ), Table of Isotopes, Seventh Edition, John Wiley & Sons, New York, 1978, p.36.
Google Scholar
[17]
P.J. Schultz, K.G. Lynn, Interaction of positron beams with surfaces, thin films, and interfaces, Rev. Mod. Phys. 60 (1988) 701–779.
DOI: 10.1103/revmodphys.60.701
Google Scholar
[18]
P.G. Coleman (Ed. ), Positron beams, World Scientific, Singapore, (2000).
Google Scholar
[19]
K. Saarinen, P. Hautojärvi, C. Corbel, in: M. Stavola (Ed. ), Identification of defects in semiconductors, Semiconductors and Semimetals, Vol. 51 A, Academic Press, San Diego, (1998).
DOI: 10.1016/s0080-8784(08)63057-4
Google Scholar
[20]
M.J. Puska, R.M. Nieminen, Theory of positrons in solids and on solid surfaces, Rev. Mod. Phys. 66 (1994) 841–897.
DOI: 10.1103/revmodphys.66.841
Google Scholar
[21]
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169–86.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[22]
J. Cizek, Prochazka, M. Cieslar, R. Kuzel, J. Kuriplach, F. Chmelik, I. Stulikova, F. Becvar, O. Melichova, Thermal stability of ultrafine grained copper, Phys. Rev. B 65 (2002) 094106.
Google Scholar
[23]
R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors: Defect Studies, Springer Series in Solid State Science 127, Springer Verlag, Berlin, Heidelberg, New Jersey, 1999, pp.5-48.
DOI: 10.1007/978-3-662-03893-2_4
Google Scholar
[24]
J. Kuriplach, A.L. Morales, C. Dauwe, D. Segers, M. Sob, Vacancies and vacancy-oxygen complexes in silicon: Positron annihilation with core electrons, Phys. Rev. B 58 (1998) 10475–83.
DOI: 10.1103/physrevb.58.10475
Google Scholar
[25]
M. Eldrup, D. Lightbody, N.J. Sherwood, The temperature dependence of positron lifetimes in solid pivalic acid, Chem. Phys. 63 (1981) 51–58.
DOI: 10.1016/0301-0104(81)80307-2
Google Scholar
[26]
K. Ito, H. Nakanishi, Y. Ujihira, Extension of the equation for the annihilation lifetime of ortho-positronium at a cavity larger than 1 nm in radius, J. Chem. Phys. B 103 (1999) 4555−8.
DOI: 10.1021/jp9831841
Google Scholar
[27]
K. Wada, T. Hyodo, A simple shape-free model for pore-size estimation with positron annihilation lifetime spectroscopy, J. Phys.: Conf. Ser. 443 (2013) 012003.
DOI: 10.1088/1742-6596/443/1/012003
Google Scholar
[28]
S.V. Stepanov, V.M. Byakov, Physical and radiation chemistry of positrons and positronium, in: Y.C. Yean, P.E. Mallon, D.M. Schrader (Eds. ), Principles and Applications of Positron & Positronium Chemistry, World Scientific, Singapore, 2002, p.117.
DOI: 10.1142/9789812775610_0005
Google Scholar
[29]
O.E. Mogensen, Theory, in: Positron Annihilation in Chemistry, Springer Series in Chemical Physics 58, 1st edition, Springer Verlag, 1995, p.15–28.
DOI: 10.1007/978-3-642-85123-0_2
Google Scholar
[30]
T. Chang, H. Tang, Y. Li, Gamma-ray energy spectrum from orthopositronium three-gamma decay, Phys. Lett. 157B (1985) 357–60.
DOI: 10.1016/0370-2693(85)90380-6
Google Scholar
[31]
Y.C. Wu, J. Jiang, S.J. Wang, A. Kalllis, P.G. Coleman, Phys. Rev. B 84 (2011) 064123.
Google Scholar
[32]
I.A. Yashchishyn, A.M. Korduban, T.E. Konstantinova, I.A. Danilenko, G.K. Volkova, V.A. Glazunova, Structure and surface characterization of ZrO2-Y2O3-Cr2O3 system, Appl. Surf. Sci. 256 (2010) 7175−7.
DOI: 10.1016/j.apsusc.2010.05.046
Google Scholar
[33]
T. Konstantinova, I. Danilenko, V. Glazunova, G. Volkova, O. Gorban, Mesoscopic phenomena in oxide nanoparticle systems: process of growth, J. Nanoparticle Research 13 (2011) 4015−23.
DOI: 10.1007/s11051-011-0329-8
Google Scholar
[34]
F. Becvar, J. Cizek, L. Lestak, I. Novotny, I. Prochazka, F. Sebesta, A high-resolution BaF2 positron-lifetime spectrometer and experience with its long-term exploitation, Nucl. Instr. Meth. in Phys. Research A 443 (2000) 557–577.
Google Scholar
[35]
F. Becvar, J. Cizek, I. Prochazka, J. Janotova, The asset of ultra-fast digitizers for positron-lifetime spectroscopy, Nucl. Instr. Meth. in Phys. Research A 539 (2005) 372−85.
Google Scholar
[36]
I. Prochazka, I. Novotny, F. Becvar, Application of maximum-likelihood method to decomposition of positron lifetime spectra to finite number of components, Mater. Sci. Forum 255–257 (1997) 772−4.
DOI: 10.4028/www.scientific.net/msf.255-257.772
Google Scholar
[37]
H. Surbeck, Measurements of positron lifetime in AgBr crystals, Helv. Phys. Acta 50 (1977) 705−721.
Google Scholar
[38]
J. Cizek, M. Vlcek, I. Prochazka, Digital spectrometer for coincidence measurement of Doppler broadening of positron annihilation, Nucl. Instr. Meth. in Phys. Research A 623 (2010) 982−94.
Google Scholar
[39]
W. Anwand, G. Brauer, M. Butterling, H. -R. Kissener, A. Wagner, Design and Construction of a Slow Positron Beam for Solid and Surface Investigations, in: B. N. Ganguly, G. Brauer (Eds. ), Near-Surface Depth Profiling of Solids by Mono-Energetic positrons, Defects and Diffusion Forum, Vol. 331, Trans. Tech. Pub., Zurich, 2012, p.25.
DOI: 10.4028/www.scientific.net/ddf.331.25
Google Scholar
[40]
O.E. Mogensen, Experimental Methods, in: Positron Annihilation in Chemistry, Springer Series in Chemical Physics 58, 1st edition, Springer Verlag, 1995, p.29–47.
DOI: 10.1007/978-3-642-85123-0_3
Google Scholar
[41]
A.Z. Varisov, V.I. Grafutin, A.G. Zaluzhnyi, O.V. Ilyukhina, G.G. Myasishcheva, E.P. Prokop'ev, S.P. Timoshenkov, Yu.V. Funtikov, Positron and Positronium Diffusion in Nanomaterials, J. Surf. Investigation, X-ray, Synchrotron and Neutron Techniques 2 (2008).
DOI: 10.1134/s1027451008060232
Google Scholar