Diffusion in Glassy Metals

Article Preview

Abstract:

Firstly, this paper reminds the reader of some basic facts about the glassy state, then of the various ways to produce amorphous metals with particular emphasis on the route of vitrification from the melt. Vitrification of an undercooled melt is the most important route from the viewpoint of the application of metallic glasses. We compare diffusion in some metallic glasses with related crystalline metals. Glassy metals, also called metallic glasses, comprise conventional [1] and bulk metallic glasses [2,3]. We remind the reader of the major experimental techniques for diffusion studies in metallic glasses. The paper then reviews our current understanding of diffusion in glassy metals (see also [4,5,6]), including conventional as well as bulk metallic glasses and undercooled melts. We cover the temperature dependence of diffusion in metallic glasses and discuss the spectrum of activation parameters of glassy metals and its difference to the corresponding one of crystalline metals. We mention the pressure dependence and the isotope effect and we discuss tracer diffusion and viscosity diffusion for a bulk metallic glass and its undercooled melt. Finally we mention computer simulations of atomic jump processes. The diffusion mechanism in metallic glasses differs from that in crystalline metals and involves thermally activated, highly collective (chain-like or caterpillar-like) diffusion jumps. Finally, we mention diffusion along shearbands in a plastically deformed glassy metal.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] F.E. Luborsky (Ed. ), Amorphous Metallic Alloys, Butterworth Monographs in Materials, London, (1983).

Google Scholar

[2] A. Inoue, Bulk Amorphous Alloys, Trans Tech Publication, Zürich, (1998).

Google Scholar

[3] W. L. Johnson, Mater. Res. Bull. 11, 104 (1999).

Google Scholar

[4] H. Mehrer, Diffusion in Solids—Fundamentals, Methods, Materials, Diffusion-controlled Processes, Springer Series in Solid State Science 155; Springer Verlag Berlin, Heidelberg 2007; paperback (2010).

Google Scholar

[5] F. Faupel, W. Frank, M. -P. Macht, H. Mehrer, V. Naundorf, K. Rätzke, H. R. Schober, S.K. Sharma, H. Teichler, Diffusion in Metallic Glasses and Supercooled Melts, Reviews of Modern Physics 75, 237-280 (2003).

DOI: 10.1103/revmodphys.75.237

Google Scholar

[6] H. Mehrer, Diffusion in amorphen metallischen Legierungen, Chapt. 10 in: Th. Heumann Diffusion In Metallen, Springer-Verlag (1992).

DOI: 10.1007/978-3-642-86413-1_10

Google Scholar

[7] W.L. Johnson, Progr. Mater. Science 30, 81 (1986).

Google Scholar

[8] H. Mehrer, G. Rummel, in: Diffusion in Amorphous Materials, H. Jain and D. Gupta (Eds. ), TMS Publication, (1994), p.163.

Google Scholar

[9] W. Buckel, B. Hilsch, Z. Physik 132 420 (1952).

Google Scholar

[10] W. Buckel, Z. Physik 138, 136 (1952).

Google Scholar

[11] P. Duwez, R. Willens, B.M. Clement, Nature 187, 809 (1960).

Google Scholar

[12] C.C. Koch, O.B. Cavin, C.G. McKamey, Appl. Phys. Letter 43, 1017 (1983).

Google Scholar

[13] A.E. Ermakov, E.E. Yurchikov, V.A. Barinov, Fiz. Metal. Metalloved. 52, 1184 (1981).

Google Scholar

[14] M. Schänzer, H. Mehrer, Colloque de Physique, Colloque C4, Supplement No. 14, Vol. 51, C4-87 (1990).

Google Scholar

[15] R.B. Schwarz, W. L. Johnson, Phys. Rev. Lett. 51, 415 (1983).

Google Scholar

[16] K. Samwer, Phys. Reports 161, 1 (1988).

Google Scholar

[17] A. W. Imre, S. Voss, H. Mehrer, J. Non-cryst. Solids 333, 231 (2004).

Google Scholar

[18] D. Turnbull, J.C. Fisher, J. Chem. Phys. 17, 71 (1949); ibid 18, 198 (1950).

Google Scholar

[19] H.S. Chen, Acta Metall. 22, 1021 (1969).

Google Scholar

[20] W. Clement, R.H. Willens, P. Duwez, Nature 187, 869 (1960).

Google Scholar

[21] J. Horvath, K. Pfahler, W. Ulfert, W. Frank, H. Mehrer, J. de Phys. (France) 46, C8-645 (1985).

DOI: 10.1051/jphyscol:19858104

Google Scholar

[22] M.F. Ashby, D.R.H. Jones, Engineering Materials 2 – An Introduction to Microstructures, Processing and Design, Pergamon Press, (1986).

Google Scholar

[23] W. Dörner, H. Mehrer, Phys. Rev. B44, 101 (1991).

Google Scholar

[24] J. Horvath, J. Ott, K. Pfahler, W: Ulfert, Mat. Sci. Engineering 57, 409 (1988).

Google Scholar

[25] K. Hoshino, R.S. Averback, H. Hahn, S.J. Rothman, J. Mater. Res. 3. 55 (1988).

Google Scholar

[26] A.L. Greer, C.J. Lin, F. Spaepen, in: Proceedings of the 4th international Conference on Rapidly Quenched Metals, edited by T. Masumoto and K. Suzuki, Japan Institute of Metals, Sendai, 567 (1982).

Google Scholar

[27] G.M. Hood, J. Phys. F 8, 1677 (1978).

Google Scholar

[28] H. Hahn, R.S. Averbach, Phys. Rev. B 37, 6533 (1988).

Google Scholar

[29] F. Wenwer, N.A. Stolwijk, H. Mehrer, Z. f. Metallkunde 80, 205 (1989).

Google Scholar

[30] R. Busch, W.L. Johnson, Mater. Sci. Forum 269-272, 577 (1998).

Google Scholar

[31] K. Knorr, M, -P. Macht, H. Mehrer, Mat. Res. Soc. Symp. Proc. 554, 269 (1999).

Google Scholar

[32] Th. Zumkley, M. -P. Macht, G. Frohberg, Scripta Mater. 45, 471 (2001).

Google Scholar

[33] H. Mehrer, Diffusion in Solids under Pressure, Def. and Diff. Forum 309-310, 91 (2011), and H. Mehrer, (Vol. Ed. ), Diffusion in Solid Metals and Alloys, Landolt-Börnstein, New Series, Group III, Vol. 26, Springer-Verlag (1990).

DOI: 10.1007/b37801

Google Scholar

[34] J. Horvath, H. Mehrer, Cryst. Latt. Def. and Amorph. Mat. 13, 1 (1986).

Google Scholar

[35] K. Knorr, M. -P. Macht, H. Mehrer, Self-diffusion in Bulk Metallic Glasses, in: Materials Development and Processing - Bulk Amorphous Materials, Undercooling and Powder Metallurgy (Eds.: J. V. Wood, L. Schultz, D.M. Herlach), EUROMAT 99 - Vol. 8, 22 - 29, Wiley-VCH, Weinheim, (2000).

DOI: 10.1002/3527607277.ch4

Google Scholar

[36] A.D. Le Claire, Correlation Effects in Diffusion in Solids, in: Physical Chemistry – an Advanced Treatise, Vol. X, Ch. 5, Academic Press, (1970).

Google Scholar

[37] G. Frohberg, K. -H. Kraatz, H. Wever, Mater. Sci. Forum. 15-18, 529 (1987).

Google Scholar

[38] H. Ehmler, A. Heesemann, K. Rätzke, F. Faupel, U. Geyer, Phys. Rev. Lett. 80, 4919 (1998).

DOI: 10.1103/physrevlett.80.4919

Google Scholar

[39] H. Ehmler, K. Rätzke, F. Faupel, J. Non-Cryst. Solids, 250-252, 684 (!999).

Google Scholar

[40] K. Rätzke, F. Faupel, Phys. Rev. B 45, 7459 (1992).

Google Scholar

[41] A. Bartsch, K. Rätzke, F. Faupel, Appl. Phys. Lett. 89, 121917 (2006).

Google Scholar

[42] H. Teichler, J. Non-Cryst. Solids 293, 339 (2001).

Google Scholar

[43] S. Voss, S.V. Divinski, A.W. Imre, H. Mehrer, J.N. Mundy, Towards a Universal View of Ion Dynamics in Na- and Rb-Oxide Glasses, Solid State Ionics 176, 1383 (2006).

DOI: 10.1016/j.ssi.2005.03.007

Google Scholar

[44] J. Bokeloh, S.V. Divinski, G. Reglitz, G. Wilde, Phys. Rev. Lett. 107, 235503 (2011).

DOI: 10.1103/physrevlett.107.269901

Google Scholar