Molecular Dynamics of the Transport of Ions in a Synthetic Channel

Article Preview

Abstract:

Molecular dynamics investigations of ions in certain non-bulk media predict that they are capable of significantly greater mobilities than when in the liquid state. The entries of Li+, Na+, and K+ ions from electrolyte media into proposed synthetic channels consisting of fourteen 15-crown-ether-5 (CE) rings bonded in stacked conformations are described and their subsequent dynamics in the channel discussed. The importance of channel flexibility is established by investigating two CE channels that are structurally similar but vary in the rigidity with which their rings are connected. The dynamics of cation channel migrants are simulated across a bilayer membrane between two bulk aqueous salt solutions and also when the channel floats freely in an aqueous medium. Various features of ion behaviour are investigated in the presence, and in the absence, of an electric field applied along the channel axis. The novel oscillatory behaviour of the ions in the channel is investigated, together with the possibility of their exits into the liquid medium. The frictional forces opposing the ion trajectories are calculated, found to be ~10 nN and attempts to formulate frictional laws for nanoscale systems are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-95

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.J. Aidley and P.R. Stanfield, Ion Channels, Cambridge University Press, Cambridge (1996).

Google Scholar

[2] J. -C. Olsen, K. E. Griffiths and J. F. Stoddart , A Short History of the Mechanical Bond, in From Non-Covalent Assemblies to Molecular Machines, J. -P. Sauvage, P. Gaspard (Eds. ), Wiley-VCH: Weinheim, Germany (2011), pp.67-139.

DOI: 10.1002/9783527632817.ch8

Google Scholar

[3] see for example) B. Roux, B Prod'hom, M. Karplus, Biophys J. 68 p.876–892 (1995).

Google Scholar

[4] S. Matile, A. Som and N. Sorde, Tetrahedron 60 6405-35 (2004); N. Sakai and S. Matile, Langmuir 29 9031-40 (2013); T.M. Fyles, Chem. Soc. Rev. 36 335-47 (2007); L. Echegoyen, Nature 369 276-7 (1994).

Google Scholar

[5] I. Tabushi, Y. Kuroda and K. Yokota, Tetrahedron Lett. 23 4601-4 (1982)].

Google Scholar

[6] M.R. Ghadiri, J.R. Granja and Lukas K. Buehler, Nature 369 301 (1994).

Google Scholar

[7] G.A. Woolley and B. A Wallace, J. Membr. Biol. 129 109-136 (1992)].

Google Scholar

[8] G.W. Gokel, R. Ferdani, J. Liu, R. Pajewski, H. Shabany and P. Uetrecht, Chem. -Eur. J. 7 33-39 (2001)].

DOI: 10.1002/1521-3765(20010105)7:1<33::aid-chem33>3.0.co;2-3

Google Scholar

[9] D.A. Morton-Blake, Journal of Molecular Liquids 167, 57 (2012).

Google Scholar

[10] W. Smith and T.R. Forester, J. Molec. Graphics 14 (1996) 136.

Google Scholar

[11] Gaussian 03, Revision E. 01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, (2004).

Google Scholar

[12] J. Åqvist, J. Phys. Chem. 94 8021-8024 (1990).

Google Scholar

[13] S.H. Lee and J.C. Rasaiah, J. Chem. Phys. 100 1420 (1996).

Google Scholar

[14] S. L. Mayo, B. D. Olafson and W.A. Goddard III, J. Phys. Chem. 94 (1990) 8897-8909.

Google Scholar

[15] H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91 (1987), pp.6269-6271.

Google Scholar

[16] D.A. Morton-Blake, Soft Matter 6 558 (2010).

Google Scholar

[17] H.D. Young, R.A. Freedman, University Physics 11th ed., Pearson Addison Wesley, San Francisco (2004).

Google Scholar

[18] D.A. Morton-Blake and Conan Kumari-Doyle, Computational and Theoretical Chemistry 1008 74 (2013).

Google Scholar

[19] L. Singer, Friction and energy dissipation at the atomic scale: A review. J. Vac. Sci. Technol. A (1994) 12(5), Sep/Oct 2605-216; Fundamentals of Friction, edited by I. L. Singer and H. M. Pollock ~Kluwer, Dordrecht, (1992).

Google Scholar

[20] E. Gnecco, R. Bennewitz, T. Gaylog, Ch. Loppacher, M. Bammerlin, E. Meyer, H. -J. Güntherodt, Physical Review Letters 84 1172 (2000).

DOI: 10.1103/physrevlett.84.1172

Google Scholar

[21] I.M. Sivebaek, V.N. Samoilov, Bo.N. J. Persson, Langmuir 26 8721 (2010).

Google Scholar

[22] P.T. Henderson, D. Jones, G. Hampikian, Y. Kan, G.B. Schuster, Proc. Natl. Academy of Sciences of the United States of America 96, 8353-8358 (1999).

DOI: 10.1073/pnas.96.15.8353

Google Scholar