Mechanical Activation of Mn-O Oxides: Structural Phase Transitions, Magnetism and Oxygen Isotope Exchange

Article Preview

Abstract:

The mechanically activated oxides MnO2, Mn2O3, Mn3O4 and MnO were studied under ambient and non-ambient temperature conditions. Regimes of mechanical treatment were found that allowed one to preserve the single-phase state without an essential change of oxide chemical composition. New data about the temperatures and sequence of phase transitions in mechanically activated manganese oxides as well as about the kinetics of isotope exchange were obtained. Magnetic properties of the treated oxides were measured in the temperature range of 4-300К. It is shown that mechano-activation essentially influenced the temperature and field dependences of magnetization, temperatures of magnetic phase transitions and leads to the appearance of additional magnetic phases. New data on the rates of surface reactions during isotope exchange and oxygen self-diffusion coefficients are obtained.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] P. Ayyub, V.R. Palkar, S. Chattopadhyay et al. Effect of Crystal Size Reduction on Lattice Symmetry and Cooperative Properties. Phys. Rev. B. v. 51, 9, (1995) pp.6135-6138.

DOI: 10.1103/physrevb.51.6135

Google Scholar

[2] P. Mondal, D. Bhattacharya, P. Choudhury. Dielectric anomaly at orbital order-disorder transition in LaMnO3+d. J. Phys. Condens. Matter. (2006) V. 18, p.6869.

DOI: 10.1088/0953-8984/18/29/024

Google Scholar

[3] N. Das, P. Mondal, D. Bhattacharya. Partical size dependence of orbital order-disorder transition in LaMnO3. Phys. Rev. B. (2006) v. 74, p.014410.

Google Scholar

[4] V. Ya. Shevchenko, O.L. Khasanov, G.S. Yuryev. Coexistence of Cubic and Tetragonal Structures in Yttria-Stabilized Zirconia Nanoparticles - Inorganic Materials, Vol. 37, No. 9 (2001) p.950 – 952.

Google Scholar

[5] Fishman A. Ya., Ivanov M.A., Petrova S.A., Zakharov R.G. Structural Phase Transitions in Mechanoactivated Manganese Oxides. Defect and Diffusion Forum. Vols. 297-301 (2010) pp.1306-1311.

DOI: 10.4028/www.scientific.net/ddf.297-301.1306

Google Scholar

[6] S.A. Petrova, R.G. Zakharov, A. Ya. Fishman, L.I. Leontiev. Phase States of Mechanoactivated Manganese Oxides. The Optimization of Composition, Structure and Properties of Metals, Oxides, Composites, Nano- and Amorphous Materials. Proceedings of the Ninth Israeli-Russian Bi-National Workshop 2010, July 25-30, Belokurikha (2010).

DOI: 10.4028/www.scientific.net/ddf.297-301.1306

Google Scholar

[7] A.V. Fetisov, A. Ya. Fishman, S.A. Petrova, R.G. Zakharov, E.A. Pastukhov. Structural Properties of Mechanoactivated Mn2O3. Proceedings of the Sixth International Conference "Mathematical Modeling and Computer Simulations of Material Technologies (MMT-2010), Ariel University Center of Samaria, Ariel, Israel 2010, pp.1-201.

Google Scholar

[8] E.V. Vikhodetz, R,.G. Zakharov, M.A. Ivanov et al. Peculiarities of Jahn-Teller Structural Phase Transitions in the Nanosized Systems. Russ. J. Mater. Sci. Т. 138. № 9 (2008) С. 53-61.

Google Scholar

[9] G. Tromel, W. Fix, K. Koch, and F. Schaberg, Erzmetall, 29(5), 234 (1976).

Google Scholar

[10] A. Ya. Fishman, M.A. Ivanov, S.A. Petrova, R.G. Zakharov: Defect Diffusion Forum Vols. 297-301 (2010) p.1306.

DOI: 10.4028/www.scientific.net/ddf.297-301.1306

Google Scholar

[11] V.V. Ziryanov, V.F. Sisoev, V.V. Boldirev, T.V. Korostileva: Patent USSR N 1375328.

Google Scholar

[12] DiffracPlus: EVA, TOPAS Bruker AXS GmbH, Karlsruhe, Germany. (2008).

Google Scholar

[13] D. Balzar: Voigt-function model in diffraction line-broadening analysis. - Microstructure Analysis from Diffraction, edited by R. L. Snyder, H. J. Bunge, and J. Fiala, International Union of Crystallography (1999).

Google Scholar

[14] A. Ya. Fishman, M.A. Ivanov, S.A. Petrova et al.: Defect Diffusion Forum Vols. 283-286 (2009) p.53.

Google Scholar

[15] R.G. Zakharov, S.A. Petrova, A.E. Udilov, A.N. Petrov, A.I. Vylkov, V.L. Lisin. Patent RU №72329, 2008, IB No. 10.

Google Scholar

[16] P.Z. Si, E. Bruck, Z.D. Zhang, O. Tegus, W.S. Zhang, K.H.J. Buschow, J.C.P. Klaasse: Mater. Res. Bull. V. 40 (2005) p.29.

Google Scholar

[17] A.E. Berkowitz, G.F. Rodriguez, J.I. Hong, K. An, T. Hyeon, N Agarwa, D.J. Smith, E.E. Fullerton: J. Phys. D: Appl. Phys. V. 41 (2008) p.134007.

Google Scholar

[18] M. Regulski, R. Przenioslo, I. Sosnowska, D. Howhlwein, and R. Schneider: J. Alloys Compd. Vol. 362, (2004) p.236.

Google Scholar

[19] N. Yamamoto, T. Endo, M. Shimada, and T. Takada: Jap. J. Appl. Phys. V. 13 (1974) p.723.

Google Scholar

[20] V.B. Vykhodets, E.V. Vykhodets, B.A. Gizhevskii et al: JETP Letters Vol. 87, (2008) p.115.

Google Scholar

[21] A. Ya. Fishman, T.E. Kurennykh, S.A. Petrova et al: J. Nano Research Vol. 7 (2009) p.33.

Google Scholar

[22] A. Fishman, T. Kurennykh, V. Vykhodets and E. Vykhodets, in: Advances in Ceramics - Characterization, Raw Materials, Processing, Properties, Degradation and Healing, edited by Costas Sikalidis InTech - Open Access Publisher, Rijeka, Croatia (2011).

DOI: 10.5772/19122

Google Scholar

[23] A. Ya. Fishman, T.E. Kurennykh et al.: Defect Diffusion Forum Vols. 326-328 (2012) p.713.

Google Scholar