The Decisive Contributions by L. Boltzmann and C. Matano to the Quantitative Analysis of Diffusion Phenomena

Article Preview

Abstract:

The origin of the analysis of concentration dependent diffusivities in solids is closely related to a method nowadays referred to as the Boltzmann-Matano method. This chapter recalls the scientific environment of the emergence of this method first described in a paper by C. Matano in 1933. The unique contributions by L. Boltzmann as well as by C. Matano, who were active in completely different scientific fields at different times, are presented. Some specific aspects related to the Boltzmann-Matano method are critically reviewed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-57

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fick, Poggendorffsche Annalen der Physik 94 (1855) 59-86.

Google Scholar

[2] T. Graham, Philosophical Transactions 151 (1861) 183-224.

Google Scholar

[3] J. Stefan, Sitzungsbericht der Wiener Akademie 79 II (1879) 161-214.

Google Scholar

[4] W. Kawalki, Annalen der Physik und Chemie 52 (1894) 166-190.

Google Scholar

[5] W. Seith, J.G. Laird, Zeitschrift für Metallkunde 24 (1932) 193-196.

Google Scholar

[6] O. Wiener, Wiedemannsche Annalen 49 (1983) 105-149.

Google Scholar

[7] L. Boltzmann, Annalen der Physik und Chemie 53 (1894) 959-964.

Google Scholar

[8] V. Hausmaninger, Sitzungsbericht der Wiener Akademie 86 (1882) 1073-1089.

Google Scholar

[9] K. Waitz, Annalen der Physik und Chemie, Neue Folge, Band XVII, (1882). 201-236.

Google Scholar

[10] W. Roberts-Austen, Phil. Trans. R. Soc. Lond 187 (1896a) 383-415.

Google Scholar

[11] W. Seith, Diffusion in Metallen, Springer, Berlin 1939, pp.55-66.

Google Scholar

[12] G. Grube, Zeitschrift für Metallkunde 19 (1927) 438-447.

Google Scholar

[13] G. Grube, W. Fischbein, Zeitschr. f. anorg. u. allg. Chemie 154 (1926) 314-332.

Google Scholar

[14] G . Grube, A. Jedele, Zeitschrift für Elektrochemie 38 (1932) 799-807.

Google Scholar

[15] G. Grube, F. Lieberwirth, Zeitschrift für anorganische Chemie 188 (1930) 274-289.

Google Scholar

[16] G. v. Hevesy, W. Seith, Zeitschrift für Elektrochemie 37 (1931) 528-531.

Google Scholar

[17] C. Matano, Japanese Journal of Physics 8 (1933) 109-113.

Google Scholar

[18] J.W. Christian, Theory of Transformations in Metals and Alloys, Pergamon, Oxford, (1965).

Google Scholar

[19] L.S. Darken, R.W. Gurry, Physical Chemistry of Metals McGraw-Hill, New York (1953).

Google Scholar

[20] R. W. Cahn, The Coming of Materials Science, Pergamon, Amsterdam, (2001).

Google Scholar

[21] E.O. Kirkendall, Trans AIME 147 (1942) 104-109.

Google Scholar

[22] H. Nakajima, JOM 49(6) (1997) 15-19.

Google Scholar

[23] H.B. Huntington, F. Seitz, Phys. Rev. 61 (1942) 315-325.

Google Scholar

[24] A.S. Nowick, Ann. Rev. Mater Sci. 26 (1996) 1-19.

Google Scholar

[25] A. Paul, Met. Mater. Trans A 44 (2013) 5622-5623.

Google Scholar

[26] H. Mehrer, Mater. Trans JIM 37 (1996) 1259-1280.

Google Scholar

[27] W. Sprengel, Th.A. Lograsso, H. Nakajima, Phys. Rev. Lett. 77 (1996) 5233-5236.

Google Scholar

[28] F. Ye, W. Sprengel, R.K. Wunderlich, H. -J. Fecht, H. -E. Schaefer, Proc. Nat. Acad. Sci. 104 (2007) 12962-12965.

DOI: 10.1073/pnas.0705221104

Google Scholar

[29] M. Koiwa, W. Sprengel: (in Japanese) Materia (Japan Inst. of Metals) 46 (2007) 682-688.

Google Scholar