Superstructure Transformations in High-Temperature Intermetallic Nanolayers: Atomistic Simulation

Article Preview

Abstract:

Superstructure transformation processes in intermetallics have beenstudied at the atomistic scale using Monte Carlo algorithms within two dis-tinct models: two-body interactions Ising-like system and Analytic Bond-Order Potentials. The transformation from “in-plane” to “off-plane” L10 vari-ant in [001]-oriented FePt nano-layers was observed and analysed by analyt-ical calculations providing clear explanation of the origin of the process, aswell as by “rigid-lattice” and “off-lattice” Monte Carlo simulations showingthe kinetics of the superstructure transformation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-27

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. B. Massalski, J. L. Murray, L. H. Bennett, H. Baker, Binary Alloy Phase Diagrams, American Society for Metals, (1986).

Google Scholar

[2] Y. Nose, A. Kushida, T. Ikeda, H. Nakajima, K. Tanaka, H. Numakura, Re-examination of Phase Diagram of Fe-Pt System, Materials Transactions 44 (12) (2003) 2723-2731.

DOI: 10.2320/matertrans.44.2723

Google Scholar

[3] M. Shiga, H. Wada, 3d, 4d and 5d Elements, Alloys and Compounds, Vol. 32A of LandoltBornstein - Group III Condensed Matter, Springer-Verlag, (1997).

DOI: 10.1007/10135124_80

Google Scholar

[4] M. Chen, D. E. Nikles, Synthesis, Self-Assembly, and Magnetic Properties of FexCoyPt100−x−y Nanoparticles, Nano Lett. 2 (2002) 211-214.

Google Scholar

[5] R. K. nad M. Kozlowski, K. Zapala, V. Pierron-Bohnes, W. Pfeiler, M. Rennhofer, B. Sepiol, G. Vogl, Atomic migration on ordering and diffusion in bulk and nanostructured FePt intermetallic, Journal of Phase Equilibria and Diffusion 26 (2005).

DOI: 10.1361/154770305x66583

Google Scholar

[6] O. Gutfleisch, J. Lyubina, K. -H. Müller, L. Schultz, FePt Hard Magnets, Advanced Engineering Materials 7 (4) (2005) 208-212.

DOI: 10.1002/adem.200400183

Google Scholar

[7] K. Barmak, J. Kim, L. H. Lewis, K. R. Coffey, M. F. Toney, A. J. Kellock, J. -U. Thiele, On the relationship of magnetocrystalline anisotropy and stoichiometry in epitaxial L10 CoPt (001) and FePt (001) thin films, Journal of Applied Physics 98 (3) (2005).

DOI: 10.1063/1.1991968

Google Scholar

[8] D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J. -U. Thiele, M. F. Doerner, High Ku materials approach to 100 Gbits/in2, IEEE Trans. Magn. 36 (2000) 10.

DOI: 10.1109/20.824418

Google Scholar

[9] S. Jeong, Y. -N. Hsu, D. E. Laughlin, M. E. McHenry, Atomic Ordering and Coercivity Mechanism in FePt and CoPt Polycristaline thin films, IEEE Trans. Mag 37, 4 (2001) 1299, IEEE Trans. Mag 37 (4) (2001) 1299.

DOI: 10.1109/20.950823

Google Scholar

[10] J. S. Chen, B. C. Lim, Y. F. Ding, C. G. M., Low-temperature deposition of L10 FePt films for ultra-high density magnetic recording, J. Magn. Magn. Mater. 303 (2) (2006) 309-317.

DOI: 10.1016/j.jmmm.2006.01.106

Google Scholar

[11] S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices, Science 287 (2000) (1989).

DOI: 10.1126/science.287.5460.1989

Google Scholar

[12] Y. K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo, K. Hono, Size dependence of ordering in FePt nanoparticles, Journal of Applied Physics 95 (5) (2004) 2690-2696.

DOI: 10.1063/1.1643187

Google Scholar

[13] B. D. Terris, T. Thomson, Nanofabricated and self-assembled magnetic structures as data storage media, J. Phys. D: Appl. Phys. 38 (2005) 199-222.

DOI: 10.1088/0022-3727/38/12/r01

Google Scholar

[14] P. Villars, L. D. Calvet (Eds. ), Pearson's Handbook of Crystallographic Data for Intermetallic Phases, Metals Park, OH: American Society for Metals, (1985).

Google Scholar

[15] D. P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, (2005).

Google Scholar

[16] K. Kawasaki, Diffusion Constants near the Critical Point for Time-Dependent Ising Models. I, Phys. Rev. 145 (1) (1966) 224-230.

DOI: 10.1103/physrev.145.224

Google Scholar

[17] B. C. S. Grandi, W. Figueiredo, Critical exponents of the Ising model with competing Glauber and Kawasaki dynamics, Phys. Rev. E 53 (5) (1996) 5484-5487.

DOI: 10.1103/physreve.53.5484

Google Scholar

[18] E. Ising, Beitrag zur Theorie des Ferromagnetismus, Zeitschr. f. Physik 31 (1925) 253-258.

DOI: 10.1007/bf02980577

Google Scholar

[19] T. Mohri, Y. Chen, First-Principles Investigation of L10-Disorder Phase Equilibrium in Fe-Pt System, MATERIALS TRANSACTIONS 43 (8) (2002) 2104-2109.

DOI: 10.2320/matertrans.43.2104

Google Scholar

[20] Y. Chen, T. Atago, T. Mohri, First-principles study for ordering and phase separation in the Fe-Pd system, J. Phys.: Condens. Matter 12 (2002) 1903-(1913).

DOI: 10.1088/0953-8984/14/8/318

Google Scholar

[21] J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B 37 (1988) 6991.

DOI: 10.1103/physrevb.37.6991

Google Scholar

[22] J. Tersoff, Empirical interatomic potential for silicon with improved elastic properties, Phys. Rev. B 38 (1988) 9902.

DOI: 10.1103/physrevb.38.9902

Google Scholar

[23] J. Tersoff, Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon, Phys. Rev. Lett. 61 (25) (1988) 2879-2882.

DOI: 10.1103/physrevlett.61.2879

Google Scholar

[24] P. Erhart, K. Albe, Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide, Phys. Rev. B 71 (035211).

DOI: 10.1103/physrevb.71.035211

Google Scholar

[25] R. Drautz, D. A. Murdick, D. Nguyen-Manh, X. Zhou, H. N. G. Wadley, D. G. Pettifor, Analytic bond-order potential for predicting structural trends across the sp-valent elements, Phys. Rev. B 72 (144105).

DOI: 10.1103/physrevb.72.144105

Google Scholar

[26] D. G. Pettifor, M. W. Finnis, D. Nguyen-Manh, D. A. Murdick, X. W. Zhou, H. N. G. Wadley, Analytic bond-order potentials for multicomponent systems, Materials Science and Engineering A 365 (1-2) (2004) 2-13, multiscale Materials Modelling.

DOI: 10.1016/j.msea.2003.09.001

Google Scholar

[27] D. W. Brenner, Relationship between the embedded-atom method and Tersoff potentials, Phys. Rev. Lett. 63 63 (1989) 1022.

DOI: 10.1103/physrevlett.63.1022

Google Scholar

[28] R. Drautz, D. G. Pettifor, Valence-dependent analytic bond-order potential for transition metals, Physical Review B (Condensed Matter and Materials Physics) 74 (17) (2006) 174117.

DOI: 10.1103/physrevb.74.174117

Google Scholar

[29] M. Müller, P. Erhart, K. Albe, Thermodynamics of L10 ordering in FePt nanoparticles studied by Monte Carlo simulations based on an analytic bond-order potential, Phys. Rev. B 76 (155412) (2007) 155412.

DOI: 10.1103/physrevb.76.155412

Google Scholar

[30] D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B 42 (15) (1990) 9458-9471.

DOI: 10.1103/physrevb.42.9458

Google Scholar

[31] M. Kozlowski, R. Kozubski, V. Pierron-Bohnes, W. Pfeiler, L10-ordering kinetics in FePt nanolayers: Monte Carlo simulation, Comput. Mater. Sci. 33 (2005).

DOI: 10.1016/j.commatsci.2004.12.012

Google Scholar

[32] M. Kozlowski, R. Kozubski, C. Goyhenex, V. Pierron-Bohnes, M. Rennhofer, S. Malinov, Atomic ordering in nano-layered FePt, Intermetallics 17 (11) (2009) 907-913.

DOI: 10.1016/j.intermet.2009.03.019

Google Scholar

[33] M. Kozlowski, Advanced Lattice-based Platform with Hybrid Algorithms and configurable Result Data output, open source (GPL) software project, available at http: /sourceforge. net/projects/alphard (Feb. 2007).

Google Scholar

[34] T. Miyazaki, O. Kitakami, S. Okamoto, Y. Shimada, Z. Akase, Y. Murakami, D. Shindo, Y. K. Takahashi, K. Hono, Size effect on the ordering of L10 FePt nanoparticles, Phys. Rev. B 72 (2005) 144419.

DOI: 10.1109/intmag.2005.1463514

Google Scholar

[35] M. Kozlowski, R. Kozubski, C. Goyhenex, Surface induced superstructure transformation in L10 FePt by Monte Carlo simulations implemented with Analytic Bond-Order Potentials, Materials Letters 106 (0) (2013) 273 - 276.

DOI: 10.1016/j.matlet.2013.04.029

Google Scholar

[36] M. Muller, P. Erhart, K. Albe, Analytic bond-order potential for bcc and fcc iron-comparison with established embedded-atom method potentials, J. Phys.: Condens. Matter 19 (2007) 326220.

DOI: 10.1088/0953-8984/19/32/326220

Google Scholar

[37] M. Kozlowski, Advanced Lattice-based modelling Platform with Hybrid Algorithms and configurable Data output, GPL Software Package, sourceforge. net/projects/alphard.

Google Scholar

[38] M. Muller, Atomistic Computer Simulations of FePt Nanoparticles: Thermodynamic and Kinetic Properties, Ph.D. thesis, Material- und Geowissenschaften der Technischen Universitat Darmstadt (2007).

Google Scholar

[39] B. Yang, M. Asta, O. N. Mryasov, T. J. Klemmer, R. W. Chantrell, The nature of A1-L10 ordering transitions in alloy nanoparticles: A Monte Carlo study, Acta Materialia 54 (16) (2006) 4201- 4211.

DOI: 10.1016/j.actamat.2006.05.013

Google Scholar

[40] S. Hong, M. H. Yoo, Surface energy anisotropy of FePt nanoparticles, J. App. Phys. 97 (8) (2005) 084315.

Google Scholar

[41] A. Dannenberg, M. E. Gruner, A. Hucht, P. Entel, Surface energies of stoichiometric FePt and CoPt alloys and their implications for nanoparticle morphologies, Phys. Rev. B 80 (2009) 245438.

DOI: 10.1103/physrevb.80.245438

Google Scholar

[42] M. Rennhofer, B. Sepiol, G. Vogl, M. Kozlowski, R. Kozubski, B. Laenens, A. Vantomme, J. Meersschaut, Re-Orientation Behaviour of c-Variant FePt Thin Films, Diffusion-Fundamentals 6 (2007) 45. 1-45. 2.

DOI: 10.1016/j.intermet.2010.06.011

Google Scholar

[43] M. Rennhofer, M. Kozlowski, B. Laenens, B. Sepiol, R. Kozubski, D. Smeets, A. Vantomme, Study of reorientation processes in L10-ordered FePt thin films, Intermetallics 18 (11) (2010) 2069-(2076).

DOI: 10.1016/j.intermet.2010.06.011

Google Scholar

[44] M. -G. Kim, S. -C. Shina, K. Kang, Ordering of island-like FePt L10 thin films, Appl. Phys. Lett. 80 (20).

DOI: 10.1063/1.1480109

Google Scholar

[45] J. -S. Kim, Y. -M. Koo, Thickness dependence of (001) texture evolution in FePt thin films on an amorphous substrate, Thin Solid Films 516 (6) (2008) 1147-1154.

DOI: 10.1016/j.tsf.2007.06.071

Google Scholar

[46] V. R. Reddy, A. Gupta, A. Gome, W. Leitenberger, U. Pietsch, In situ x-ray reflectivity and grazing incidence x-ray diffraction study of L 1 0 ordering in 57 Fe/Pt multilayers, Journal of Physics: Condensed Matter 21 (18) (2009) 186002.

DOI: 10.1088/0953-8984/21/18/186002

Google Scholar

[47] K. Sato, T. Kajiwara, M. Fujiyoshi, M. Ishimaru, Y. Hirotsu, T. Shinohara, Effects of surface step and substrate temperature on nanostructure of L1[sub 0]-FePt nanoparticles, J. App. Phys. 93 (10) (2003) 7414-7416.

DOI: 10.1063/1.1541641

Google Scholar

[48] A. Breitling, D. Goll, Hard magnetic L10 FePt thin films and nanopatterns, Journal of Magnetism and Magnetic Materials 320 (8) (2008) 1449-1456.

DOI: 10.1016/j.jmmm.2007.12.003

Google Scholar

[49] T. Miyazaki, O. Kitakami, S. Okamoto, Y. Shimada, Size effect on the ordering of L10 FePt nanoparticles, Phys. Rev. B 72 (144419) (2005) 144419.

Google Scholar