[1]
T. B. Massalski, J. L. Murray, L. H. Bennett, H. Baker, Binary Alloy Phase Diagrams, American Society for Metals, (1986).
Google Scholar
[2]
Y. Nose, A. Kushida, T. Ikeda, H. Nakajima, K. Tanaka, H. Numakura, Re-examination of Phase Diagram of Fe-Pt System, Materials Transactions 44 (12) (2003) 2723-2731.
DOI: 10.2320/matertrans.44.2723
Google Scholar
[3]
M. Shiga, H. Wada, 3d, 4d and 5d Elements, Alloys and Compounds, Vol. 32A of LandoltBornstein - Group III Condensed Matter, Springer-Verlag, (1997).
DOI: 10.1007/10135124_80
Google Scholar
[4]
M. Chen, D. E. Nikles, Synthesis, Self-Assembly, and Magnetic Properties of FexCoyPt100−x−y Nanoparticles, Nano Lett. 2 (2002) 211-214.
Google Scholar
[5]
R. K. nad M. Kozlowski, K. Zapala, V. Pierron-Bohnes, W. Pfeiler, M. Rennhofer, B. Sepiol, G. Vogl, Atomic migration on ordering and diffusion in bulk and nanostructured FePt intermetallic, Journal of Phase Equilibria and Diffusion 26 (2005).
DOI: 10.1361/154770305x66583
Google Scholar
[6]
O. Gutfleisch, J. Lyubina, K. -H. Müller, L. Schultz, FePt Hard Magnets, Advanced Engineering Materials 7 (4) (2005) 208-212.
DOI: 10.1002/adem.200400183
Google Scholar
[7]
K. Barmak, J. Kim, L. H. Lewis, K. R. Coffey, M. F. Toney, A. J. Kellock, J. -U. Thiele, On the relationship of magnetocrystalline anisotropy and stoichiometry in epitaxial L10 CoPt (001) and FePt (001) thin films, Journal of Applied Physics 98 (3) (2005).
DOI: 10.1063/1.1991968
Google Scholar
[8]
D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J. -U. Thiele, M. F. Doerner, High Ku materials approach to 100 Gbits/in2, IEEE Trans. Magn. 36 (2000) 10.
DOI: 10.1109/20.824418
Google Scholar
[9]
S. Jeong, Y. -N. Hsu, D. E. Laughlin, M. E. McHenry, Atomic Ordering and Coercivity Mechanism in FePt and CoPt Polycristaline thin films, IEEE Trans. Mag 37, 4 (2001) 1299, IEEE Trans. Mag 37 (4) (2001) 1299.
DOI: 10.1109/20.950823
Google Scholar
[10]
J. S. Chen, B. C. Lim, Y. F. Ding, C. G. M., Low-temperature deposition of L10 FePt films for ultra-high density magnetic recording, J. Magn. Magn. Mater. 303 (2) (2006) 309-317.
DOI: 10.1016/j.jmmm.2006.01.106
Google Scholar
[11]
S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices, Science 287 (2000) (1989).
DOI: 10.1126/science.287.5460.1989
Google Scholar
[12]
Y. K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo, K. Hono, Size dependence of ordering in FePt nanoparticles, Journal of Applied Physics 95 (5) (2004) 2690-2696.
DOI: 10.1063/1.1643187
Google Scholar
[13]
B. D. Terris, T. Thomson, Nanofabricated and self-assembled magnetic structures as data storage media, J. Phys. D: Appl. Phys. 38 (2005) 199-222.
DOI: 10.1088/0022-3727/38/12/r01
Google Scholar
[14]
P. Villars, L. D. Calvet (Eds. ), Pearson's Handbook of Crystallographic Data for Intermetallic Phases, Metals Park, OH: American Society for Metals, (1985).
Google Scholar
[15]
D. P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, (2005).
Google Scholar
[16]
K. Kawasaki, Diffusion Constants near the Critical Point for Time-Dependent Ising Models. I, Phys. Rev. 145 (1) (1966) 224-230.
DOI: 10.1103/physrev.145.224
Google Scholar
[17]
B. C. S. Grandi, W. Figueiredo, Critical exponents of the Ising model with competing Glauber and Kawasaki dynamics, Phys. Rev. E 53 (5) (1996) 5484-5487.
DOI: 10.1103/physreve.53.5484
Google Scholar
[18]
E. Ising, Beitrag zur Theorie des Ferromagnetismus, Zeitschr. f. Physik 31 (1925) 253-258.
DOI: 10.1007/bf02980577
Google Scholar
[19]
T. Mohri, Y. Chen, First-Principles Investigation of L10-Disorder Phase Equilibrium in Fe-Pt System, MATERIALS TRANSACTIONS 43 (8) (2002) 2104-2109.
DOI: 10.2320/matertrans.43.2104
Google Scholar
[20]
Y. Chen, T. Atago, T. Mohri, First-principles study for ordering and phase separation in the Fe-Pd system, J. Phys.: Condens. Matter 12 (2002) 1903-(1913).
DOI: 10.1088/0953-8984/14/8/318
Google Scholar
[21]
J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B 37 (1988) 6991.
DOI: 10.1103/physrevb.37.6991
Google Scholar
[22]
J. Tersoff, Empirical interatomic potential for silicon with improved elastic properties, Phys. Rev. B 38 (1988) 9902.
DOI: 10.1103/physrevb.38.9902
Google Scholar
[23]
J. Tersoff, Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon, Phys. Rev. Lett. 61 (25) (1988) 2879-2882.
DOI: 10.1103/physrevlett.61.2879
Google Scholar
[24]
P. Erhart, K. Albe, Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide, Phys. Rev. B 71 (035211).
DOI: 10.1103/physrevb.71.035211
Google Scholar
[25]
R. Drautz, D. A. Murdick, D. Nguyen-Manh, X. Zhou, H. N. G. Wadley, D. G. Pettifor, Analytic bond-order potential for predicting structural trends across the sp-valent elements, Phys. Rev. B 72 (144105).
DOI: 10.1103/physrevb.72.144105
Google Scholar
[26]
D. G. Pettifor, M. W. Finnis, D. Nguyen-Manh, D. A. Murdick, X. W. Zhou, H. N. G. Wadley, Analytic bond-order potentials for multicomponent systems, Materials Science and Engineering A 365 (1-2) (2004) 2-13, multiscale Materials Modelling.
DOI: 10.1016/j.msea.2003.09.001
Google Scholar
[27]
D. W. Brenner, Relationship between the embedded-atom method and Tersoff potentials, Phys. Rev. Lett. 63 63 (1989) 1022.
DOI: 10.1103/physrevlett.63.1022
Google Scholar
[28]
R. Drautz, D. G. Pettifor, Valence-dependent analytic bond-order potential for transition metals, Physical Review B (Condensed Matter and Materials Physics) 74 (17) (2006) 174117.
DOI: 10.1103/physrevb.74.174117
Google Scholar
[29]
M. Müller, P. Erhart, K. Albe, Thermodynamics of L10 ordering in FePt nanoparticles studied by Monte Carlo simulations based on an analytic bond-order potential, Phys. Rev. B 76 (155412) (2007) 155412.
DOI: 10.1103/physrevb.76.155412
Google Scholar
[30]
D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B 42 (15) (1990) 9458-9471.
DOI: 10.1103/physrevb.42.9458
Google Scholar
[31]
M. Kozlowski, R. Kozubski, V. Pierron-Bohnes, W. Pfeiler, L10-ordering kinetics in FePt nanolayers: Monte Carlo simulation, Comput. Mater. Sci. 33 (2005).
DOI: 10.1016/j.commatsci.2004.12.012
Google Scholar
[32]
M. Kozlowski, R. Kozubski, C. Goyhenex, V. Pierron-Bohnes, M. Rennhofer, S. Malinov, Atomic ordering in nano-layered FePt, Intermetallics 17 (11) (2009) 907-913.
DOI: 10.1016/j.intermet.2009.03.019
Google Scholar
[33]
M. Kozlowski, Advanced Lattice-based Platform with Hybrid Algorithms and configurable Result Data output, open source (GPL) software project, available at http: /sourceforge. net/projects/alphard (Feb. 2007).
Google Scholar
[34]
T. Miyazaki, O. Kitakami, S. Okamoto, Y. Shimada, Z. Akase, Y. Murakami, D. Shindo, Y. K. Takahashi, K. Hono, Size effect on the ordering of L10 FePt nanoparticles, Phys. Rev. B 72 (2005) 144419.
DOI: 10.1109/intmag.2005.1463514
Google Scholar
[35]
M. Kozlowski, R. Kozubski, C. Goyhenex, Surface induced superstructure transformation in L10 FePt by Monte Carlo simulations implemented with Analytic Bond-Order Potentials, Materials Letters 106 (0) (2013) 273 - 276.
DOI: 10.1016/j.matlet.2013.04.029
Google Scholar
[36]
M. Muller, P. Erhart, K. Albe, Analytic bond-order potential for bcc and fcc iron-comparison with established embedded-atom method potentials, J. Phys.: Condens. Matter 19 (2007) 326220.
DOI: 10.1088/0953-8984/19/32/326220
Google Scholar
[37]
M. Kozlowski, Advanced Lattice-based modelling Platform with Hybrid Algorithms and configurable Data output, GPL Software Package, sourceforge. net/projects/alphard.
Google Scholar
[38]
M. Muller, Atomistic Computer Simulations of FePt Nanoparticles: Thermodynamic and Kinetic Properties, Ph.D. thesis, Material- und Geowissenschaften der Technischen Universitat Darmstadt (2007).
Google Scholar
[39]
B. Yang, M. Asta, O. N. Mryasov, T. J. Klemmer, R. W. Chantrell, The nature of A1-L10 ordering transitions in alloy nanoparticles: A Monte Carlo study, Acta Materialia 54 (16) (2006) 4201- 4211.
DOI: 10.1016/j.actamat.2006.05.013
Google Scholar
[40]
S. Hong, M. H. Yoo, Surface energy anisotropy of FePt nanoparticles, J. App. Phys. 97 (8) (2005) 084315.
Google Scholar
[41]
A. Dannenberg, M. E. Gruner, A. Hucht, P. Entel, Surface energies of stoichiometric FePt and CoPt alloys and their implications for nanoparticle morphologies, Phys. Rev. B 80 (2009) 245438.
DOI: 10.1103/physrevb.80.245438
Google Scholar
[42]
M. Rennhofer, B. Sepiol, G. Vogl, M. Kozlowski, R. Kozubski, B. Laenens, A. Vantomme, J. Meersschaut, Re-Orientation Behaviour of c-Variant FePt Thin Films, Diffusion-Fundamentals 6 (2007) 45. 1-45. 2.
DOI: 10.1016/j.intermet.2010.06.011
Google Scholar
[43]
M. Rennhofer, M. Kozlowski, B. Laenens, B. Sepiol, R. Kozubski, D. Smeets, A. Vantomme, Study of reorientation processes in L10-ordered FePt thin films, Intermetallics 18 (11) (2010) 2069-(2076).
DOI: 10.1016/j.intermet.2010.06.011
Google Scholar
[44]
M. -G. Kim, S. -C. Shina, K. Kang, Ordering of island-like FePt L10 thin films, Appl. Phys. Lett. 80 (20).
DOI: 10.1063/1.1480109
Google Scholar
[45]
J. -S. Kim, Y. -M. Koo, Thickness dependence of (001) texture evolution in FePt thin films on an amorphous substrate, Thin Solid Films 516 (6) (2008) 1147-1154.
DOI: 10.1016/j.tsf.2007.06.071
Google Scholar
[46]
V. R. Reddy, A. Gupta, A. Gome, W. Leitenberger, U. Pietsch, In situ x-ray reflectivity and grazing incidence x-ray diffraction study of L 1 0 ordering in 57 Fe/Pt multilayers, Journal of Physics: Condensed Matter 21 (18) (2009) 186002.
DOI: 10.1088/0953-8984/21/18/186002
Google Scholar
[47]
K. Sato, T. Kajiwara, M. Fujiyoshi, M. Ishimaru, Y. Hirotsu, T. Shinohara, Effects of surface step and substrate temperature on nanostructure of L1[sub 0]-FePt nanoparticles, J. App. Phys. 93 (10) (2003) 7414-7416.
DOI: 10.1063/1.1541641
Google Scholar
[48]
A. Breitling, D. Goll, Hard magnetic L10 FePt thin films and nanopatterns, Journal of Magnetism and Magnetic Materials 320 (8) (2008) 1449-1456.
DOI: 10.1016/j.jmmm.2007.12.003
Google Scholar
[49]
T. Miyazaki, O. Kitakami, S. Okamoto, Y. Shimada, Size effect on the ordering of L10 FePt nanoparticles, Phys. Rev. B 72 (144419) (2005) 144419.
Google Scholar