Hollow Hemisphere Shell Formation by Pure Kirkendall Porosity

Article Preview

Abstract:

Nanoshell formation has been studied experimentally in Ag/Au and Ag/Pd systems in a hemispherical geometry at different temperatures. The void formation in these systems is the result of pure Kirkendall-porosity formation, because it is caused mainly by the inequality of the intrinsic atomic fluxes and other effects (e.g. stresses), inevitably present during nanoshell formations in solid state reactions (oxides, sulphides), can be less important or can be neglected. The kinetics of the process was followed by Transmission Electron Microscopy. Both the growth and shrinkage regimes of the process were observed at the same temperature and even the temperature dependence of the characteristic time (tcr) describing the crossover of the two different regimes was observed. We succeeded to show that tcr shifts to smaller values with increasing temperature. This confirms the theoretical results:the growth and the shrinkage regimes are controlled by the faster as well as the slower diffusion coefficients (DA as well as DB), respectively. It is also illustrated that, confirming recent theoretical predictions, the pore radius linearly depends on the initial particle radius and the slope of this straight line increases with the average composition of the faster component.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-73

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Philibert: Atom movement, diffusion and mass transport in solids, Le Edition de Physique, 220 (1991).

Google Scholar

[2] Y. E. Geguzin: Diffusion Zone (Moscow: Nauka) (1979).

Google Scholar

[3] A.M. Gusak, T.V. Zaporozhets, J. Phys.: Condens. Matter 21 415303 (2009).

Google Scholar

[4] D.L. Beke, I.A. Szabó, Z. Erdelyi, G. Opposits: Mater. Sci. Eng. A 4 387 (2004).

Google Scholar

[5] G. Schmitz, C.B. Ene, C. Nowak: Acta Mater. 57 2673 (2009).

Google Scholar

[6] Z. Erdélyi: Nanoscale Diffusion and Solid State Reaction in Layered Structures: XRR, XRD, GIXRF, EXAFS, XSW, In: Dao Ming Chua, Huang Fu Toh (ed. ) Synchrotron: Design, Properties and Applications New York: Nova Science Publishers Inc., 2012. pp.115-132.

Google Scholar

[7] Z. Erdélyi, G. Schmitz: Acta Mater. 60 1807(2012).

Google Scholar

[8] F. Aldinger: Acta Met. 22, 923 (1974).

Google Scholar

[9] Y.E. Geguzin, Y. Klinchuk, I. Yu and L.N. Paritskaya: Fiz. Met. Metalloved. (in Russian) 43, 602 (1977).

Google Scholar

[10] Y. Yin, R.M. Rioux C.K. Erdonmez, S. Hughes, G.A. Somorjai, and A.P. Alivisatos: Science 304 711 (2004).

DOI: 10.1126/science.1096566

Google Scholar

[11] Y. Yin, C.K. Erdonmez, A. Cabot, S. Hughes and A.P. Alivisatos: Adv. Funct. Mater. 16 1389 (2006).

DOI: 10.1002/adfm.200600256

Google Scholar

[12] C.M. Wang, D.R. Baer, L.E. Thomas, J.E. Amonette, J. Antony, Y. Qiang and G. Duscher: J. Appl. Phys. 98 09430 (2005).

Google Scholar

[13] R. Nakamura, J.G. Lee, D. Tokozakura, H. Mori and H. Nakajima: Mater. Lett. 61, 1060 (2007).

Google Scholar

[14] R. Nakamura, D. Tokozakura, H. Nakajima, J.G. Lee and H. Mori: J. Appl. Phys., 101 074303 (2007).

Google Scholar

[15] R. Nakamura, J.G. Lee, H. Mori and H. Nakajima: Phil. Mag. 88 257 (2008).

Google Scholar

[16] H. Nakajima, R. Nakamura: J. of Nano Research, 7, 1 (2009).

Google Scholar

[17] K.N. Tu and U. Gösele: Appl. Phys. Lett. 86 093111 (2005).

Google Scholar

[18] A.M. Gusak, T.V. Zaporozhets, K.N. Tu and U. Gösele: Phil. Mag. 85 4445 (2005).

Google Scholar

[19] I.V. Belova and G.E. Murch: J of Phase Eq. and Diff. 26, 430 (2005).

Google Scholar

[20] A.V. Evteev, E.V. Levchenko, I.V. Belova and G.E. Murch: Phil. Mag. 87 3787 (2007).

Google Scholar

[21] R. Nakamura, D. Tokozakura, J.G. Lee, H. Mori and H. Nakajima: Acta Mater. 56 5276 (2008).

Google Scholar

[22] A.M. Gusak and K.N. Tu: Acta Mater. 57 3367 (2009).

Google Scholar

[23] A.V. Evteev, E.V. Levchenko, I.V. Belova and G.E. Murch: J. of Nano Research, 7, 11 (2009).

Google Scholar

[24] A.V. Evteev, E.V. Levchenko, I.V. Belova and G.E. Murch: Phil. Mag. 88, 1524 (2008).

Google Scholar

[25] G.E. Murch, A.V. Evteev, E.V. Levchenko and I.V. Belova: Diffusion Fundamentals 11, 1 (2009).

Google Scholar

[26] I. Beszeda, I.A. Szabó and E.G. Gontier-Moya: Appl. Phys. A78 1079 (2004).

Google Scholar

[27] O.M. Podolyan, T.V. Zaporozhets: Ukr. J. Phys., 2011, 56, 929-939.

Google Scholar

[28] Gy. Glodán, C. Cserhati, I. Beszeda, D.L. Beke: Appl. Phys. Lett. 97 (2010), 113109-3.

Google Scholar

[29] Gy. Glodán, C. Cserháti, D.L. Beke: Phil. Mag. 92 (2012)31: 3806-3812.

Google Scholar

[30] H.J. Fan, M. Knez, R. Scholtz, D. Hesse K. Nirelsch, M. Zacharias, U. Gösele: Nano Lett., 2007, 7, 993-997.

Google Scholar

[31] H. Mehrer: Diffusion in Solid Metals and Alloys, Landolt Börnstein, New Series III/26, Springer-Verlag, Berlin, (1990).

Google Scholar

[32] A. Haessner, M. Jurish, W. Lange: Z. Metallkunde, 60 (1969) 219.

Google Scholar