Review of Mechanical and Physicochemical Pretreatments in Essential Oil Extraction: Mass-Transfer Enhancement and Yield Optimization

Abstract:

Essential oils are volatile bioactive compounds widely used in pharmaceuticals, food preservation, cosmetics, and aromatherapy. Conventional hydrodistillation and steam distillation remain the primary recovery methods but suffer from long extraction times, moderate yields, and thermal degradation. Mechanical and physicochemical pretreatments address these limits by disrupting secretory structures, shortening diffusion paths, and enhancing mass transfer. From a chemical engineering perspective, this review synthesizes evidence published between 2010 and 2025 on particle-size reduction, ultrasound-assisted hydrodistillation, microwave-assisted hydrodistillation, steam explosion, instant controlled pressure drop, and cold pressing of citrus peels. Outcomes vary by matrix: in seeds such as celery, ultrasound-assisted hydrodistillation increases yield by nearly 50% compared with conventional hydrodistillation; in citrus peels, steam explosion accelerates extraction up to eightfold but reduces composition to limonene, while cold pressing preserves thermolabile aldehydes and esters crucial for fragrance. Instant controlled pressure drop applied to hyssop and Tagetes enhances yield, accelerates kinetics, and improves antioxidant indices through microstructural expansion confirmed by microscopy. In leaves and flowers including rosemary and lavandin, ultrasound- and microwave-based methods consistently shorten cycles while maintaining comparable chemical and sensory profiles. The addition of low-cost modifiers such as sodium chloride and optimized water-to-solid ratios further improves rosemary hydrodistillation without compromising oil quality. These findings highlight trade-offs among rate, yield, and composition. Standardized reporting of particle size, moisture content, and kinetic parameters is recommended to ensure reproducibility and cross-study comparison. Mechanical pretreatments thus provide a flexible framework to optimize essential oil extraction across industrial and bioengineering applications.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] B. Ashaq, K. Rasool, S. Habib, I. Bashir, N. Nisar, S. Mustafa, Q. Ayaz, G.A. Nayik, J. Uddin, S. Ramniwas, R. Mugabi, S.M. Wani, Insights into chemistry, extraction and industrial application of lemon grass essential oil -A review of recent advances, Food Chem X, 22 (2024) 101521.

DOI: 10.1016/j.fochx.2024.101521

Google Scholar

[2] Md.H. Bin Nabi, Md.M. Ahmed, Md.S. Mia, S. Islam, W. Zzaman, Essential oils: Advances in extraction techniques, chemical composition, bioactivities, and emerging applications, Food Chemistry Advances, 8 (2025) 101048.

DOI: 10.1016/j.focha.2025.101048

Google Scholar

[3] S. Maharaj, D. McGaw, Mathematical Model for the Removal of Essential Oil Constituents during Steam Distillation Extraction, Processes, 8 (2020) 400.

DOI: 10.3390/pr8040400

Google Scholar

[4] J.Q. Goodger, A.M. Heskes, M.C. Mitchell, D.J. King, E.H. Neilson, I.E. Woodrow, Isolation of intact sub-dermal secretory cavities from Eucalyptus, Plant Methods, 6 (2010) 20.

DOI: 10.1186/1746-4811-6-20

Google Scholar

[5] J. Sharifi-Rad, A. Sureda, G.C. Tenore, M. Daglia, M. Sharifi-Rad, M. Valussi, R. Tundis, M. Sharifi-Rad, M.R. Loizzo, A. Oluwaseun Ademiluyi, R. Sharifi-Rad, S.A. Ayatollahi, M. Iriti, Biological activities of essential oils: From plant chemoecology to traditional healing systems, 2017.

DOI: 10.3390/molecules22010070

Google Scholar

[6] I.N. Gostin, C.F. Blidar, Glandular Trichomes and Essential Oils Variability in Species of the Genus Phlomis L: A Review, Plants, 13 (2024) 1338.

DOI: 10.3390/plants13101338

Google Scholar

[7] J.M. Budel, M.R. Duarte, P.M. Döll-Boscardin, P. V. Farago, N.I. Matzenbacher, A. Sartoratto, B.H.L.N. Sales Maia, Composition of essential oils and secretory structures of Baccharis anomala , B megapotamica and B ochracea, Journal of Essential Oil Research, 24 (2012) 19–24.

DOI: 10.1080/10412905.2012.645634

Google Scholar

[8] J. Zorga, A. Kunicka-Styczyńska, R. Gruska, K. Śmigielski, Ultrasound-Assisted Hydrodistillation of Essential Oil from Celery Seeds (Apium graveolens L) and Its Biological and Aroma Profiles, Molecules, 25 (2020) 5322.

DOI: 10.3390/molecules25225322

Google Scholar

[9] G.D. Teresa-Martínez, A. Cardador-Martínez, C. Téllez-Pérez, K. Allaf, C. Jiménez-Martínez, M. Alonzo-Macías, Effect of the Instant Controlled Pressure Drop Technology in Cardamom (Elettaria cardamomum) Essential Oil Extraction and Antioxidant Activity, Molecules, 27 (2022) 3433.

DOI: 10.3390/molecules27113433

Google Scholar

[10] S. Khalid, K. Chaudhary, S. Amin, S. Raana, M. Zahid, M. Naeem, A. Mousavi Khaneghah, R.M. Aadil, Recent advances in the implementation of ultrasound technology for the extraction of essential oils from terrestrial plant materials: A comprehensive review, Ultrason Sonochem, 107 (2024) 106914.

DOI: 10.1016/j.ultsonch.2024.106914

Google Scholar

[11] J.L. Pech-Almeida, C. Téllez-Pérez, M. Alonzo-Macías, G.D. Teresa-Martínez, K. Allaf, T. Allaf, A. Cardador-Martínez, An Overview on Food Applications of the Instant Controlled Pressure-Drop Technology, an Innovative High Pressure-Short Time Process, Molecules, 26 (2021) 6519.

DOI: 10.3390/molecules26216519

Google Scholar

[12] M. Golmohammadi, A. Borghei, A. Zenouzi, N. Ashrafi, M.J. Taherzadeh, Optimization of essential oil extraction from orange peels using steam explosion, Heliyon, 4 (2018) e00893.

DOI: 10.1016/j.heliyon.2018.e00893

Google Scholar

[13] J.J. Jadhav, G.C. Jadeja, M.A. Desai, Ultrasound-assisted hydrodistillation for extraction of essential oil from clove buds – A step towards process improvement and sustainable outcome, Chemical Engineering and Processing - Process Intensification, 189 (2023) 109404.

DOI: 10.1016/j.cep.2023.109404

Google Scholar

[14] Z. Wang, Y. Guo, S. Wang, L. Xie, Q. Lu, X. Wang, Effect of steam explosion pretreatment on the aqueous extraction efficiency of soybean oil, Innovative Food Science & Emerging Technologies, 104 (2025) 104080.

DOI: 10.1016/j.ifset.2025.104080

Google Scholar

[15] S. Zhang, Y. Pan, L. Zheng, Y. Yang, X. Zheng, B. Ai, Z. Xu, Z. Sheng, Application of steam explosion in oil extraction of camellia seed ( Camellia oleifera Abel) and evaluation of its physicochemical properties, fatty acid, and antioxidant activities, Food Sci Nutr, 7 (2019) 1004–1016.

DOI: 10.1002/fsn3.924

Google Scholar

[16] Y.W. Wulandari, C. Anwar, S. Supriyadi, Preliminary Study: Effect Steam Explosion Pretreatment on the Extraction of Essential Oil from Kaffir Lime Leaves (Citrus Hystrix DC), The International Journal of Science & Technoledge, 6 (2018) 41–46.

DOI: 10.1088/1757-899x/633/1/012011

Google Scholar

[17] K. Labri, H. Moghrani, R. Ihadadene, H. Hamitouche, R. Maachi, The application of the full factorial design and Response Surface Methodology in optimization conditions for essential oils extraction from Lavandula stoechas, Carum carvi and Eucalyptus camaldulensis: Effect of plants particle size on the extraction of essential oils, Sustain Chem Pharm, 30 (2022) 100830.

DOI: 10.1016/j.scp.2022.100830

Google Scholar

[18] D. Ben Hassine, S. Kammoun El Euch, R. Rahmani, N. Ghazouani, R. Kane, M. Abderrabba, J. Bouajila, Clove Buds Essential Oil: The Impact of Grinding on the Chemical Composition and Its Biological Activities Involved in Consumer's Health Security, Biomed Res Int, 2021 (2021).

DOI: 10.1155/2021/9940591

Google Scholar

[19] M.A. Ayub, I. Iram, R. Waseem, I. Ayub, A. Hussain, M.A. Abid, S.Z. Iqbal, Optimizing the extraction of essential oil yield from Pistacia lentiscus oleo-gum resin by superheated steam extraction using response surface methodology, Sci Rep, 14 (2024) 25791.

DOI: 10.1038/s41598-024-74972-7

Google Scholar

[20] S.F. Lim, A. Hamdan, S.N. David Chua, B.H. Lim, Comparison and optimization of conventional and ultrasound‐assisted solvent extraction for synthetization of lemongrass ( Cymbopogon )‐infused cooking oil, Food Sci Nutr, 9 (2021) 2722–2732.

DOI: 10.1002/fsn3.2234

Google Scholar

[21] S. Périno-Issartier, C. Ginies, G. Cravotto, F. Chemat, A comparison of essential oils obtained from lavandin via different extraction processes: Ultrasound, microwave, turbohydrodistillation, steam and hydrodistillation, J Chromatogr A, 1305 (2013) 41–47.

DOI: 10.1016/j.chroma.2013.07.024

Google Scholar

[22] S. Rashidi, M.H. Eikani, M. Ardjmand, Extraction of Hyssopus officinalis L essential oil using instant controlled pressure drop process, J Chromatogr A, 1579 (2018) 9–19.

DOI: 10.1016/j.chroma.2018.10.020

Google Scholar

[23] M. Vinatoru, T.J. Mason, I. Calinescu, Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials, TrAC Trends in Analytical Chemistry, 97 (2017) 159–178.

DOI: 10.1016/j.trac.2017.09.002

Google Scholar

[24] T. Allaf, V. Tomao, C. Besombes, F. Chemat, Thermal and mechanical intensification of essential oil extraction from orange peel via instant autovaporization, Chemical Engineering and Processing: Process Intensification, 72 (2013) 24–30.

DOI: 10.1016/j.cep.2013.06.005

Google Scholar

[25] I. Ziegler-Devin, L. Chrusciel, N. Brosse, Steam Explosion Pretreatment of Lignocellulosic Biomass: A Mini-Review of Theorical and Experimental Approaches, Front Chem, 9 (2021).

DOI: 10.3389/fchem.2021.705358

Google Scholar

[26] C. Li, X. Huang, J. Xi, Steam explosion pretreatment to enhance extraction of active ingredients: current progress and future prospects, Crit Rev Food Sci Nutr, 64 (2024) 7172–7180.

DOI: 10.1080/10408398.2023.2181760

Google Scholar

[27] C. Wang, M. Lin, Q. Yang, C. Fu, Z. Guo, The Principle of Steam Explosion Technology and Its Application in Food Processing By-Products, Foods, 12 (2023) 3307.

DOI: 10.3390/foods12173307

Google Scholar

[28] M.A.. Rostagno, J.M.. Prado, Natural product extraction : principles and applications, Royal Society of Chemistry, 2022.

Google Scholar

[29] K. Labri, H. Moghrani, R. Ihadadene, H. Hamitouche, R. Maachi, The application of the full factorial design and Response Surface Methodology in optimization conditions for essential oils extraction from Lavandula stoechas, Carum carvi and Eucalyptus camaldulensis: Effect of plants particle size on the extraction of essential oils, Sustain Chem Pharm, 30 (2022) 100830.

DOI: 10.1016/j.scp.2022.100830

Google Scholar

[30] F. Yu, N. Wan, Q. Zheng, Y. Li, M. Yang, Z. Wu, Effects of ultrasound and microwave pretreatments on hydrodistillation extraction of essential oils from Kumquat peel, Food Sci Nutr, 9 (2021) 2372–2380.

DOI: 10.1002/fsn3.2073

Google Scholar

[31] I. Vrca, Ž. Fredotović, B. Jug, M. Nazlić, V. Dunkić, D. Jug, J. Radić, S.S. Možina, I. Restović, Chemical Profile of Kumquat (Citrus japonica var margarita) Essential Oil, In Vitro Digestion, and Biological Activity, Foods, 13 (2024) 3545.

DOI: 10.3390/foods13223545

Google Scholar

[32] D.S. Ramadhan, Warsito, E.D. Iftitah, Microwave-assisted Synthesis of Benzimidazole Derivatives from Citronellal in Kaffir Lime (Citrus hystrix DC) Oil, IOP Conf Ser Mater Sci Eng, 299 (2018) 012076.

DOI: 10.1088/1757-899x/299/1/012076

Google Scholar

[33] M. Gavahian, A. Farahnaky, K. Javidnia, M. Majzoobi, Comparison of ohmic-assisted hydrodistillation with traditional hydrodistillation for the extraction of essential oils from Thymus vulgaris L, Innovative Food Science & Emerging Technologies, 14 (2012) 85–91.

DOI: 10.1016/j.ifset.2012.01.002

Google Scholar

[34] M.H. Hamzah, H. Che Man, Z. Zainal Abidin, H. Jamaludin, Comparison of Citronella Oil Extraction Methods from Cymbopogon nardus Grass by Ohmic-heated Hydro-distillation, Hydro-Distillation, and Steam Distillation, Bioresources, 9 (2013).

DOI: 10.15376/biores.9.1.256-272

Google Scholar

[35] R. Abdel Samad, N. El Darra, A. Al Khatib, H.A. Chacra, A. Jammoul, K. Raafat, Novel dual-function GC/MS aided ultrasound-assisted hydrodistillation for the valorization of Citrus sinensis by-products: phytochemical analysis and anti-bacterial activities, Sci Rep, 13 (2023) 12547.

DOI: 10.1038/s41598-023-38130-9

Google Scholar

[36] Z. Kobus, R. Nadulski, K. Wilczyński, T. Guz, M. Panasiewicz, Influence of the ultrasonic treatment on the process of obtaining essential oil from caraway seeds, Agricultural Engineering, 1 (2014) 51–58.

Google Scholar

[37] T. Allaf, V. Tomao, K. Ruiz, F. Chemat, Instant controlled pressure drop technology and ultrasound assisted extraction for sequential extraction of essential oil and antioxidants, Ultrason Sonochem, 20 (2013) 239–246.

DOI: 10.1016/j.ultsonch.2012.05.013

Google Scholar

[38] L. López-Hortas, P. Rodríguez, B. Díaz-Reinoso, M.C. Gaspar, H.C. de Sousa, M.E.M. Braga, H. Domínguez, Supercritical fluid extraction as a suitable technology to recover bioactive compounds from flowers, J Supercrit Fluids, 188 (2022) 105652.

DOI: 10.1016/j.supflu.2022.105652

Google Scholar

[39] B. Díaz-Reinoso, S. Rivas, J. Rivas, H. Domínguez, Subcritical water extraction of essential oils and plant oils, Sustain Chem Pharm, 36 (2023) 101332.

DOI: 10.1016/j.scp.2023.101332

Google Scholar

[40] N. Marčac, S. Balbino, P. Tonković, A.M. Medved, E. Cegledi, S. Dragović, V. Dragović-Uzelac, M. Repajić, Hydrodistillation and Steam Distillation of Fennel Seeds Essential Oil: Parameter Optimization and Application of Cryomilling Pretreatment, Processes, 11 (2023) 2354.

DOI: 10.3390/pr11082354

Google Scholar

[41] H. Chen, Z. Gu, L. Yang, R. Yang, Y. Ji, Q. Zeng, F. Xiao, P. Huang, Optimization extraction of rosemary essential oils using hydrodistillation with extraction kinetics analysis, Food Sci Nutr, 9 (2021) 6069–6077.

DOI: 10.1002/fsn3.2549

Google Scholar

[42] S.M.B. Hashemi, M.H. Kamani, H. Amani, A. Mousavi Khaneghah, Voltage and NaCl concentration on extraction of essential oil from Vitex pseudonegundo using ohmic-hydrodistillation, Ind Crops Prod, 141 (2019) 111734.

DOI: 10.1016/j.indcrop.2019.111734

Google Scholar

[43] M. Gavahian, A. Farahnaky, Ohmic-assisted hydrodistillation technology: A review, Trends Food Sci Technol, 72 (2018) 153–161.

DOI: 10.1016/j.tifs.2017.12.014

Google Scholar

[44] M.T. Tunç, H.İ. Odabaş, Ohmic Heating-Assisted Extraction of Essential Oil, in: 2025: p.171–182.

DOI: 10.1007/978-1-0716-4634-2_11

Google Scholar

[45] M. Seidi Damyeh, M. Niakousari, Ohmic hydrodistillation, an accelerated energy-saver green process in the extraction of Pulicaria undulata essential oil, Ind Crops Prod, 98 (2017) 100–107.

DOI: 10.1016/j.indcrop.2017.01.029

Google Scholar

[46] H.K. Sandhu, P. Sinha, N. Emanuel, N. Kumar, R. Sami, E. Khojah, A.A.M. Al-Mushhin, Effect of Ultrasound-Assisted Pretreatment on Extraction Efficiency of Essential Oil and Bioactive Compounds from Citrus Waste By-Products, Separations, 8 (2021) 244.

DOI: 10.3390/separations8120244

Google Scholar

[47] M.-C. Ou, Y.-H. Liu, Y.-W. Sun, C.-F. Chan, The Composition, Antioxidant and Antibacterial Activities of Cold-Pressed and Distilled Essential Oils of Citrus paradisi and Citrus grandis (L) Osbeck, Evidence-Based Complementary and Alternative Medicine, 2015 (2015) 1–9.

DOI: 10.1155/2015/804091

Google Scholar

[48] Q. Lu, N. Huang, Y. Peng, C. Zhu, S. Pan, Peel oils from three Citrus species: volatile constituents, antioxidant activities and related contributions of individual components, J Food Sci Technol, 56 (2019) 4492–4502.

DOI: 10.1007/s13197-019-03937-w

Google Scholar

[49] D.A. Teigiserova, L. Tiruta-Barna, A. Ahmadi, L. Hamelin, M. Thomsen, A step closer to circular bioeconomy for citrus peel waste: A review of yields and technologies for sustainable management of essential oils, J Environ Manage, 280 (2021) 111832.

DOI: 10.1016/j.jenvman.2020.111832

Google Scholar

[50] K.E. Manyako, I. Chiyanzu, J. Mulopo, J. Abdulsalam, Pilot-Scale Evaluation of Concentrating Solar Thermal Technology for Essential Oil Extraction and Comparison with Conventional Heating Sources for Use in Agro-Based Industrial Applications, ACS Omega, 7 (2022) 20477–20485.

DOI: 10.1021/acsomega.1c06879

Google Scholar

[51] S. Karakaya, S.N. El, N. Karagozlu, S. Sahin, G. Sumnu, B. Bayramoglu, Microwave-assisted hydrodistillation of essential oil from rosemary, J Food Sci Technol, 51 (2014) 1056–65.

DOI: 10.1007/s13197-011-0610-y

Google Scholar

[52] M. Irakli, A. Skendi, E. Bouloumpasi, S. Christaki, C.G. Biliaderis, P. Chatzopoulou, Sustainable Recovery of Phenolic Compounds from Distilled Rosemary By-Product Using Green Extraction Methods: Optimization, Comparison, and Antioxidant Activity, Molecules, 28 (2023).

DOI: 10.3390/molecules28186669

Google Scholar