[1]
B. Ashaq, K. Rasool, S. Habib, I. Bashir, N. Nisar, S. Mustafa, Q. Ayaz, G.A. Nayik, J. Uddin, S. Ramniwas, R. Mugabi, S.M. Wani, Insights into chemistry, extraction and industrial application of lemon grass essential oil -A review of recent advances, Food Chem X, 22 (2024) 101521.
DOI: 10.1016/j.fochx.2024.101521
Google Scholar
[2]
Md.H. Bin Nabi, Md.M. Ahmed, Md.S. Mia, S. Islam, W. Zzaman, Essential oils: Advances in extraction techniques, chemical composition, bioactivities, and emerging applications, Food Chemistry Advances, 8 (2025) 101048.
DOI: 10.1016/j.focha.2025.101048
Google Scholar
[3]
S. Maharaj, D. McGaw, Mathematical Model for the Removal of Essential Oil Constituents during Steam Distillation Extraction, Processes, 8 (2020) 400.
DOI: 10.3390/pr8040400
Google Scholar
[4]
J.Q. Goodger, A.M. Heskes, M.C. Mitchell, D.J. King, E.H. Neilson, I.E. Woodrow, Isolation of intact sub-dermal secretory cavities from Eucalyptus, Plant Methods, 6 (2010) 20.
DOI: 10.1186/1746-4811-6-20
Google Scholar
[5]
J. Sharifi-Rad, A. Sureda, G.C. Tenore, M. Daglia, M. Sharifi-Rad, M. Valussi, R. Tundis, M. Sharifi-Rad, M.R. Loizzo, A. Oluwaseun Ademiluyi, R. Sharifi-Rad, S.A. Ayatollahi, M. Iriti, Biological activities of essential oils: From plant chemoecology to traditional healing systems, 2017.
DOI: 10.3390/molecules22010070
Google Scholar
[6]
I.N. Gostin, C.F. Blidar, Glandular Trichomes and Essential Oils Variability in Species of the Genus Phlomis L: A Review, Plants, 13 (2024) 1338.
DOI: 10.3390/plants13101338
Google Scholar
[7]
J.M. Budel, M.R. Duarte, P.M. Döll-Boscardin, P. V. Farago, N.I. Matzenbacher, A. Sartoratto, B.H.L.N. Sales Maia, Composition of essential oils and secretory structures of Baccharis anomala , B megapotamica and B ochracea, Journal of Essential Oil Research, 24 (2012) 19–24.
DOI: 10.1080/10412905.2012.645634
Google Scholar
[8]
J. Zorga, A. Kunicka-Styczyńska, R. Gruska, K. Śmigielski, Ultrasound-Assisted Hydrodistillation of Essential Oil from Celery Seeds (Apium graveolens L) and Its Biological and Aroma Profiles, Molecules, 25 (2020) 5322.
DOI: 10.3390/molecules25225322
Google Scholar
[9]
G.D. Teresa-Martínez, A. Cardador-Martínez, C. Téllez-Pérez, K. Allaf, C. Jiménez-Martínez, M. Alonzo-Macías, Effect of the Instant Controlled Pressure Drop Technology in Cardamom (Elettaria cardamomum) Essential Oil Extraction and Antioxidant Activity, Molecules, 27 (2022) 3433.
DOI: 10.3390/molecules27113433
Google Scholar
[10]
S. Khalid, K. Chaudhary, S. Amin, S. Raana, M. Zahid, M. Naeem, A. Mousavi Khaneghah, R.M. Aadil, Recent advances in the implementation of ultrasound technology for the extraction of essential oils from terrestrial plant materials: A comprehensive review, Ultrason Sonochem, 107 (2024) 106914.
DOI: 10.1016/j.ultsonch.2024.106914
Google Scholar
[11]
J.L. Pech-Almeida, C. Téllez-Pérez, M. Alonzo-Macías, G.D. Teresa-Martínez, K. Allaf, T. Allaf, A. Cardador-Martínez, An Overview on Food Applications of the Instant Controlled Pressure-Drop Technology, an Innovative High Pressure-Short Time Process, Molecules, 26 (2021) 6519.
DOI: 10.3390/molecules26216519
Google Scholar
[12]
M. Golmohammadi, A. Borghei, A. Zenouzi, N. Ashrafi, M.J. Taherzadeh, Optimization of essential oil extraction from orange peels using steam explosion, Heliyon, 4 (2018) e00893.
DOI: 10.1016/j.heliyon.2018.e00893
Google Scholar
[13]
J.J. Jadhav, G.C. Jadeja, M.A. Desai, Ultrasound-assisted hydrodistillation for extraction of essential oil from clove buds – A step towards process improvement and sustainable outcome, Chemical Engineering and Processing - Process Intensification, 189 (2023) 109404.
DOI: 10.1016/j.cep.2023.109404
Google Scholar
[14]
Z. Wang, Y. Guo, S. Wang, L. Xie, Q. Lu, X. Wang, Effect of steam explosion pretreatment on the aqueous extraction efficiency of soybean oil, Innovative Food Science & Emerging Technologies, 104 (2025) 104080.
DOI: 10.1016/j.ifset.2025.104080
Google Scholar
[15]
S. Zhang, Y. Pan, L. Zheng, Y. Yang, X. Zheng, B. Ai, Z. Xu, Z. Sheng, Application of steam explosion in oil extraction of camellia seed ( Camellia oleifera Abel) and evaluation of its physicochemical properties, fatty acid, and antioxidant activities, Food Sci Nutr, 7 (2019) 1004–1016.
DOI: 10.1002/fsn3.924
Google Scholar
[16]
Y.W. Wulandari, C. Anwar, S. Supriyadi, Preliminary Study: Effect Steam Explosion Pretreatment on the Extraction of Essential Oil from Kaffir Lime Leaves (Citrus Hystrix DC), The International Journal of Science & Technoledge, 6 (2018) 41–46.
DOI: 10.1088/1757-899x/633/1/012011
Google Scholar
[17]
K. Labri, H. Moghrani, R. Ihadadene, H. Hamitouche, R. Maachi, The application of the full factorial design and Response Surface Methodology in optimization conditions for essential oils extraction from Lavandula stoechas, Carum carvi and Eucalyptus camaldulensis: Effect of plants particle size on the extraction of essential oils, Sustain Chem Pharm, 30 (2022) 100830.
DOI: 10.1016/j.scp.2022.100830
Google Scholar
[18]
D. Ben Hassine, S. Kammoun El Euch, R. Rahmani, N. Ghazouani, R. Kane, M. Abderrabba, J. Bouajila, Clove Buds Essential Oil: The Impact of Grinding on the Chemical Composition and Its Biological Activities Involved in Consumer's Health Security, Biomed Res Int, 2021 (2021).
DOI: 10.1155/2021/9940591
Google Scholar
[19]
M.A. Ayub, I. Iram, R. Waseem, I. Ayub, A. Hussain, M.A. Abid, S.Z. Iqbal, Optimizing the extraction of essential oil yield from Pistacia lentiscus oleo-gum resin by superheated steam extraction using response surface methodology, Sci Rep, 14 (2024) 25791.
DOI: 10.1038/s41598-024-74972-7
Google Scholar
[20]
S.F. Lim, A. Hamdan, S.N. David Chua, B.H. Lim, Comparison and optimization of conventional and ultrasound‐assisted solvent extraction for synthetization of lemongrass ( Cymbopogon )‐infused cooking oil, Food Sci Nutr, 9 (2021) 2722–2732.
DOI: 10.1002/fsn3.2234
Google Scholar
[21]
S. Périno-Issartier, C. Ginies, G. Cravotto, F. Chemat, A comparison of essential oils obtained from lavandin via different extraction processes: Ultrasound, microwave, turbohydrodistillation, steam and hydrodistillation, J Chromatogr A, 1305 (2013) 41–47.
DOI: 10.1016/j.chroma.2013.07.024
Google Scholar
[22]
S. Rashidi, M.H. Eikani, M. Ardjmand, Extraction of Hyssopus officinalis L essential oil using instant controlled pressure drop process, J Chromatogr A, 1579 (2018) 9–19.
DOI: 10.1016/j.chroma.2018.10.020
Google Scholar
[23]
M. Vinatoru, T.J. Mason, I. Calinescu, Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials, TrAC Trends in Analytical Chemistry, 97 (2017) 159–178.
DOI: 10.1016/j.trac.2017.09.002
Google Scholar
[24]
T. Allaf, V. Tomao, C. Besombes, F. Chemat, Thermal and mechanical intensification of essential oil extraction from orange peel via instant autovaporization, Chemical Engineering and Processing: Process Intensification, 72 (2013) 24–30.
DOI: 10.1016/j.cep.2013.06.005
Google Scholar
[25]
I. Ziegler-Devin, L. Chrusciel, N. Brosse, Steam Explosion Pretreatment of Lignocellulosic Biomass: A Mini-Review of Theorical and Experimental Approaches, Front Chem, 9 (2021).
DOI: 10.3389/fchem.2021.705358
Google Scholar
[26]
C. Li, X. Huang, J. Xi, Steam explosion pretreatment to enhance extraction of active ingredients: current progress and future prospects, Crit Rev Food Sci Nutr, 64 (2024) 7172–7180.
DOI: 10.1080/10408398.2023.2181760
Google Scholar
[27]
C. Wang, M. Lin, Q. Yang, C. Fu, Z. Guo, The Principle of Steam Explosion Technology and Its Application in Food Processing By-Products, Foods, 12 (2023) 3307.
DOI: 10.3390/foods12173307
Google Scholar
[28]
M.A.. Rostagno, J.M.. Prado, Natural product extraction : principles and applications, Royal Society of Chemistry, 2022.
Google Scholar
[29]
K. Labri, H. Moghrani, R. Ihadadene, H. Hamitouche, R. Maachi, The application of the full factorial design and Response Surface Methodology in optimization conditions for essential oils extraction from Lavandula stoechas, Carum carvi and Eucalyptus camaldulensis: Effect of plants particle size on the extraction of essential oils, Sustain Chem Pharm, 30 (2022) 100830.
DOI: 10.1016/j.scp.2022.100830
Google Scholar
[30]
F. Yu, N. Wan, Q. Zheng, Y. Li, M. Yang, Z. Wu, Effects of ultrasound and microwave pretreatments on hydrodistillation extraction of essential oils from Kumquat peel, Food Sci Nutr, 9 (2021) 2372–2380.
DOI: 10.1002/fsn3.2073
Google Scholar
[31]
I. Vrca, Ž. Fredotović, B. Jug, M. Nazlić, V. Dunkić, D. Jug, J. Radić, S.S. Možina, I. Restović, Chemical Profile of Kumquat (Citrus japonica var margarita) Essential Oil, In Vitro Digestion, and Biological Activity, Foods, 13 (2024) 3545.
DOI: 10.3390/foods13223545
Google Scholar
[32]
D.S. Ramadhan, Warsito, E.D. Iftitah, Microwave-assisted Synthesis of Benzimidazole Derivatives from Citronellal in Kaffir Lime (Citrus hystrix DC) Oil, IOP Conf Ser Mater Sci Eng, 299 (2018) 012076.
DOI: 10.1088/1757-899x/299/1/012076
Google Scholar
[33]
M. Gavahian, A. Farahnaky, K. Javidnia, M. Majzoobi, Comparison of ohmic-assisted hydrodistillation with traditional hydrodistillation for the extraction of essential oils from Thymus vulgaris L, Innovative Food Science & Emerging Technologies, 14 (2012) 85–91.
DOI: 10.1016/j.ifset.2012.01.002
Google Scholar
[34]
M.H. Hamzah, H. Che Man, Z. Zainal Abidin, H. Jamaludin, Comparison of Citronella Oil Extraction Methods from Cymbopogon nardus Grass by Ohmic-heated Hydro-distillation, Hydro-Distillation, and Steam Distillation, Bioresources, 9 (2013).
DOI: 10.15376/biores.9.1.256-272
Google Scholar
[35]
R. Abdel Samad, N. El Darra, A. Al Khatib, H.A. Chacra, A. Jammoul, K. Raafat, Novel dual-function GC/MS aided ultrasound-assisted hydrodistillation for the valorization of Citrus sinensis by-products: phytochemical analysis and anti-bacterial activities, Sci Rep, 13 (2023) 12547.
DOI: 10.1038/s41598-023-38130-9
Google Scholar
[36]
Z. Kobus, R. Nadulski, K. Wilczyński, T. Guz, M. Panasiewicz, Influence of the ultrasonic treatment on the process of obtaining essential oil from caraway seeds, Agricultural Engineering, 1 (2014) 51–58.
Google Scholar
[37]
T. Allaf, V. Tomao, K. Ruiz, F. Chemat, Instant controlled pressure drop technology and ultrasound assisted extraction for sequential extraction of essential oil and antioxidants, Ultrason Sonochem, 20 (2013) 239–246.
DOI: 10.1016/j.ultsonch.2012.05.013
Google Scholar
[38]
L. López-Hortas, P. Rodríguez, B. Díaz-Reinoso, M.C. Gaspar, H.C. de Sousa, M.E.M. Braga, H. Domínguez, Supercritical fluid extraction as a suitable technology to recover bioactive compounds from flowers, J Supercrit Fluids, 188 (2022) 105652.
DOI: 10.1016/j.supflu.2022.105652
Google Scholar
[39]
B. Díaz-Reinoso, S. Rivas, J. Rivas, H. Domínguez, Subcritical water extraction of essential oils and plant oils, Sustain Chem Pharm, 36 (2023) 101332.
DOI: 10.1016/j.scp.2023.101332
Google Scholar
[40]
N. Marčac, S. Balbino, P. Tonković, A.M. Medved, E. Cegledi, S. Dragović, V. Dragović-Uzelac, M. Repajić, Hydrodistillation and Steam Distillation of Fennel Seeds Essential Oil: Parameter Optimization and Application of Cryomilling Pretreatment, Processes, 11 (2023) 2354.
DOI: 10.3390/pr11082354
Google Scholar
[41]
H. Chen, Z. Gu, L. Yang, R. Yang, Y. Ji, Q. Zeng, F. Xiao, P. Huang, Optimization extraction of rosemary essential oils using hydrodistillation with extraction kinetics analysis, Food Sci Nutr, 9 (2021) 6069–6077.
DOI: 10.1002/fsn3.2549
Google Scholar
[42]
S.M.B. Hashemi, M.H. Kamani, H. Amani, A. Mousavi Khaneghah, Voltage and NaCl concentration on extraction of essential oil from Vitex pseudonegundo using ohmic-hydrodistillation, Ind Crops Prod, 141 (2019) 111734.
DOI: 10.1016/j.indcrop.2019.111734
Google Scholar
[43]
M. Gavahian, A. Farahnaky, Ohmic-assisted hydrodistillation technology: A review, Trends Food Sci Technol, 72 (2018) 153–161.
DOI: 10.1016/j.tifs.2017.12.014
Google Scholar
[44]
M.T. Tunç, H.İ. Odabaş, Ohmic Heating-Assisted Extraction of Essential Oil, in: 2025: p.171–182.
DOI: 10.1007/978-1-0716-4634-2_11
Google Scholar
[45]
M. Seidi Damyeh, M. Niakousari, Ohmic hydrodistillation, an accelerated energy-saver green process in the extraction of Pulicaria undulata essential oil, Ind Crops Prod, 98 (2017) 100–107.
DOI: 10.1016/j.indcrop.2017.01.029
Google Scholar
[46]
H.K. Sandhu, P. Sinha, N. Emanuel, N. Kumar, R. Sami, E. Khojah, A.A.M. Al-Mushhin, Effect of Ultrasound-Assisted Pretreatment on Extraction Efficiency of Essential Oil and Bioactive Compounds from Citrus Waste By-Products, Separations, 8 (2021) 244.
DOI: 10.3390/separations8120244
Google Scholar
[47]
M.-C. Ou, Y.-H. Liu, Y.-W. Sun, C.-F. Chan, The Composition, Antioxidant and Antibacterial Activities of Cold-Pressed and Distilled Essential Oils of Citrus paradisi and Citrus grandis (L) Osbeck, Evidence-Based Complementary and Alternative Medicine, 2015 (2015) 1–9.
DOI: 10.1155/2015/804091
Google Scholar
[48]
Q. Lu, N. Huang, Y. Peng, C. Zhu, S. Pan, Peel oils from three Citrus species: volatile constituents, antioxidant activities and related contributions of individual components, J Food Sci Technol, 56 (2019) 4492–4502.
DOI: 10.1007/s13197-019-03937-w
Google Scholar
[49]
D.A. Teigiserova, L. Tiruta-Barna, A. Ahmadi, L. Hamelin, M. Thomsen, A step closer to circular bioeconomy for citrus peel waste: A review of yields and technologies for sustainable management of essential oils, J Environ Manage, 280 (2021) 111832.
DOI: 10.1016/j.jenvman.2020.111832
Google Scholar
[50]
K.E. Manyako, I. Chiyanzu, J. Mulopo, J. Abdulsalam, Pilot-Scale Evaluation of Concentrating Solar Thermal Technology for Essential Oil Extraction and Comparison with Conventional Heating Sources for Use in Agro-Based Industrial Applications, ACS Omega, 7 (2022) 20477–20485.
DOI: 10.1021/acsomega.1c06879
Google Scholar
[51]
S. Karakaya, S.N. El, N. Karagozlu, S. Sahin, G. Sumnu, B. Bayramoglu, Microwave-assisted hydrodistillation of essential oil from rosemary, J Food Sci Technol, 51 (2014) 1056–65.
DOI: 10.1007/s13197-011-0610-y
Google Scholar
[52]
M. Irakli, A. Skendi, E. Bouloumpasi, S. Christaki, C.G. Biliaderis, P. Chatzopoulou, Sustainable Recovery of Phenolic Compounds from Distilled Rosemary By-Product Using Green Extraction Methods: Optimization, Comparison, and Antioxidant Activity, Molecules, 28 (2023).
DOI: 10.3390/molecules28186669
Google Scholar