[1]
P. Schwiderowski, H. Ruland, M. Muhler, Current developments in CO2 hydrogenation towards methanol: A review related to industrial application, Curr Opin Green Sustain Chem 38 (2022) 100688.
DOI: 10.1016/j.cogsc.2022.100688
Google Scholar
[2]
M. Takht Ravanchi, S. Sahebdelfar, Catalytic conversions of CO2 to help mitigate climate change: Recent process developments, Process Safety and Environmental Protection 145 (2021) 172–194.
DOI: 10.1016/j.psep.2020.08.003
Google Scholar
[3]
C. Mebrahtu, F. Krebs, S. Abate, S. Perathoner, G. Centi, R. Palkovits, Chapter 5 - CO2 Methanation: Principles and Challenges, in: S. Albonetti, S. Perathoner, E.A. Quadrelli (Eds.), Stud Surf Sci Catal, Elsevier, 2019: p.85–103.
DOI: 10.1016/b978-0-444-64127-4.00005-7
Google Scholar
[4]
A.G. Saputro, A.L. Maulana, F. Fathurrahman, G. Shukri, M.H. Mahyuddin, M.K. Agusta, T.D.K. Wungu, H.K. Dipojono, Density functional and microkinetic study of CO2 hydrogenation to methanol on subnanometer Pd cluster doped by transition metal (M= Cu, Ni, Pt, Rh), Int J Hydrogen Energy 46 (2021) 14418–14428.
DOI: 10.1016/j.ijhydene.2021.02.009
Google Scholar
[5]
A.G. Saputro, R.I.D. Putra, A.L. Maulana, M.U. Karami, M.R. Pradana, M.K. Agusta, H.K. Dipojono, H. Kasai, Theoretical study of CO2 hydrogenation to methanol on isolated small Pdx clusters, Journal of Energy Chemistry 35 (2019) 79–87.
DOI: 10.1016/j.jechem.2018.11.005
Google Scholar
[6]
F. Brix, V. Desbuis, L. Piccolo, É. Gaudry, Tuning Adsorption Energies and Reaction Pathways by Alloying: PdZn versus Pd for CO2 Hydrogenation to Methanol, J Phys Chem Lett 11 (2020) 7672–7678.
DOI: 10.1021/acs.jpclett.0c02011
Google Scholar
[7]
D. Guo, J. Liu, X. Zhao, X. Yang, X. Chen, Comparative computational study of CO2 hydrogenation and dissociation on metal-doped Pd clusters, Sep Purif Technol 313 (2023) 123462.
DOI: 10.1016/j.seppur.2023.123462
Google Scholar
[8]
N. Garg, A. Sarkar, B. Sundararaju, Recent developments on methanol as liquid organic hydrogen carrier in transfer hydrogenation reactions, Coord Chem Rev 433 (2021) 213728.
DOI: 10.1016/j.ccr.2020.213728
Google Scholar
[9]
H. Li, L. Wang, X. Gao, F.-S. Xiao, Cu/ZnO/Al2O3 Catalyst Modulated by Zirconia with Enhanced Performance in CO2 Hydrogenation to Methanol, Ind Eng Chem Res 61 (2022) 10446–10454.
DOI: 10.1021/acs.iecr.2c00172
Google Scholar
[10]
K. Stangeland, H. Li, Z. Yu, CO2 hydrogenation to methanol: the structure–activity relationships of different catalyst systems, Energy Ecol Environ 5 (2020) 272–285.
DOI: 10.1007/s40974-020-00156-4
Google Scholar
[11]
J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang, T. Zhang, State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol, Chem Soc Rev 49 (2020) 1385–1413.
DOI: 10.1039/c9cs00614a
Google Scholar
[12]
T.P. Araújo, S. Mitchell, J. Pérez-Ramírez, Design Principles of Catalytic Materials for CO2 Hydrogenation to Methanol, Advanced Materials (2024) 2409322.
DOI: 10.1002/adma.202409322
Google Scholar
[13]
X. Jiang, X. Nie, X. Guo, C. Song, J.G. Chen, Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis, Chem Rev 120 (2020) 7984–8034.
DOI: 10.1021/acs.chemrev.9b00723
Google Scholar
[14]
Z. Ou, J. Ran, J. Niu, C. Qin, W. He, L. Yang, A density functional theory study of CO2 hydrogenation to methanol over Pd/TiO2 catalyst: The role of interfacial site, Int J Hydrogen Energy 45 (2020) 6328–6340.
DOI: 10.1016/j.ijhydene.2019.12.099
Google Scholar
[15]
O.A. Ojelade, S.F. Zaman, A Review on Pd Based Catalysts for CO2 Hydrogenation to Methanol: In-Depth Activity and DRIFTS Mechanistic Study, Catalysis Surveys from Asia 24 (2020) 11–37.
DOI: 10.1007/s10563-019-09287-z
Google Scholar
[16]
J. Ye, C. Liu, D. Mei, Q. Ge, Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: A combined DFT and kinetic study, J Catal 317 (2014) 44–53.
DOI: 10.1016/j.jcat.2014.06.002
Google Scholar
[17]
H. Eyring, The Activated Complex in Chemical Reactions, J Chem Phys 3 (1935) 107–115.
Google Scholar