Microkinetic Comparison of CO2 Hydrogenation to Methanol over Unsupported and Supported Subnanometer Pdx Clusters

Abstract:

A promising approach to meet rising energy demands while mitigating environmental risks from greenhouse gases is the conversion of carbon dioxide into methanol through CO2 hydrogenation. Previous studies have demonstrated that unsupported subnanometer Pdx clusters exhibit excellent performance in this conversion. However, the influence of support materials on the activity of Pd clusters remains poorly understood. In this study, we compare the kinetics of CO2 hydrogenation to methanol using unsupported Pd7 clusters and those supported by metal oxides, specifically Pd4/In2O3(110) and Pd3/TiO2(110). Microkinetic simulations, based on available energetic data from the literatures, reveal that Pd4/In2O3(110) delivers superior kinetic performance, followed by Pd7 and Pd3/TiO2(110). These findings demonstrate that the choice of support material plays a critical role in dictating the reaction pathway and rate for supported Pd cluster catalysts.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] P. Schwiderowski, H. Ruland, M. Muhler, Current developments in CO2 hydrogenation towards methanol: A review related to industrial application, Curr Opin Green Sustain Chem 38 (2022) 100688.

DOI: 10.1016/j.cogsc.2022.100688

Google Scholar

[2] M. Takht Ravanchi, S. Sahebdelfar, Catalytic conversions of CO2 to help mitigate climate change: Recent process developments, Process Safety and Environmental Protection 145 (2021) 172–194.

DOI: 10.1016/j.psep.2020.08.003

Google Scholar

[3] C. Mebrahtu, F. Krebs, S. Abate, S. Perathoner, G. Centi, R. Palkovits, Chapter 5 - CO2 Methanation: Principles and Challenges, in: S. Albonetti, S. Perathoner, E.A. Quadrelli (Eds.), Stud Surf Sci Catal, Elsevier, 2019: p.85–103.

DOI: 10.1016/b978-0-444-64127-4.00005-7

Google Scholar

[4] A.G. Saputro, A.L. Maulana, F. Fathurrahman, G. Shukri, M.H. Mahyuddin, M.K. Agusta, T.D.K. Wungu, H.K. Dipojono, Density functional and microkinetic study of CO2 hydrogenation to methanol on subnanometer Pd cluster doped by transition metal (M= Cu, Ni, Pt, Rh), Int J Hydrogen Energy 46 (2021) 14418–14428.

DOI: 10.1016/j.ijhydene.2021.02.009

Google Scholar

[5] A.G. Saputro, R.I.D. Putra, A.L. Maulana, M.U. Karami, M.R. Pradana, M.K. Agusta, H.K. Dipojono, H. Kasai, Theoretical study of CO2 hydrogenation to methanol on isolated small Pdx clusters, Journal of Energy Chemistry 35 (2019) 79–87.

DOI: 10.1016/j.jechem.2018.11.005

Google Scholar

[6] F. Brix, V. Desbuis, L. Piccolo, É. Gaudry, Tuning Adsorption Energies and Reaction Pathways by Alloying: PdZn versus Pd for CO2 Hydrogenation to Methanol, J Phys Chem Lett 11 (2020) 7672–7678.

DOI: 10.1021/acs.jpclett.0c02011

Google Scholar

[7] D. Guo, J. Liu, X. Zhao, X. Yang, X. Chen, Comparative computational study of CO2 hydrogenation and dissociation on metal-doped Pd clusters, Sep Purif Technol 313 (2023) 123462.

DOI: 10.1016/j.seppur.2023.123462

Google Scholar

[8] N. Garg, A. Sarkar, B. Sundararaju, Recent developments on methanol as liquid organic hydrogen carrier in transfer hydrogenation reactions, Coord Chem Rev 433 (2021) 213728.

DOI: 10.1016/j.ccr.2020.213728

Google Scholar

[9] H. Li, L. Wang, X. Gao, F.-S. Xiao, Cu/ZnO/Al2O3 Catalyst Modulated by Zirconia with Enhanced Performance in CO2 Hydrogenation to Methanol, Ind Eng Chem Res 61 (2022) 10446–10454.

DOI: 10.1021/acs.iecr.2c00172

Google Scholar

[10] K. Stangeland, H. Li, Z. Yu, CO2 hydrogenation to methanol: the structure–activity relationships of different catalyst systems, Energy Ecol Environ 5 (2020) 272–285.

DOI: 10.1007/s40974-020-00156-4

Google Scholar

[11] J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang, T. Zhang, State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol, Chem Soc Rev 49 (2020) 1385–1413.

DOI: 10.1039/c9cs00614a

Google Scholar

[12] T.P. Araújo, S. Mitchell, J. Pérez-Ramírez, Design Principles of Catalytic Materials for CO2 Hydrogenation to Methanol, Advanced Materials (2024) 2409322.

DOI: 10.1002/adma.202409322

Google Scholar

[13] X. Jiang, X. Nie, X. Guo, C. Song, J.G. Chen, Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis, Chem Rev 120 (2020) 7984–8034.

DOI: 10.1021/acs.chemrev.9b00723

Google Scholar

[14] Z. Ou, J. Ran, J. Niu, C. Qin, W. He, L. Yang, A density functional theory study of CO2 hydrogenation to methanol over Pd/TiO2 catalyst: The role of interfacial site, Int J Hydrogen Energy 45 (2020) 6328–6340.

DOI: 10.1016/j.ijhydene.2019.12.099

Google Scholar

[15] O.A. Ojelade, S.F. Zaman, A Review on Pd Based Catalysts for CO2 Hydrogenation to Methanol: In-Depth Activity and DRIFTS Mechanistic Study, Catalysis Surveys from Asia 24 (2020) 11–37.

DOI: 10.1007/s10563-019-09287-z

Google Scholar

[16] J. Ye, C. Liu, D. Mei, Q. Ge, Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: A combined DFT and kinetic study, J Catal 317 (2014) 44–53.

DOI: 10.1016/j.jcat.2014.06.002

Google Scholar

[17] H. Eyring, The Activated Complex in Chemical Reactions, J Chem Phys 3 (1935) 107–115.

Google Scholar