[1]
Sh. Mallakpour, F. Sirous, Ch. M. Hussain, Sawdust, a versatile, inexpensive, readily available bio-waste: From mother earth to valuable materials for sustainable remediation technologies, Advances in Colloid and Interface Science, volume 295, https://doi.org/10.1016/j.cis. 2021.102492.2021.
DOI: 10.1016/j.cis.2021.102492
Google Scholar
[2]
Alserai, SJ., Alsaraj, WK., and Abass, ZW., Effect of Iron filings on the mechanical properties of different types of sustainable concrete, open civil Eng. J. 12: 441–457. 2018.
DOI: 10.2174/187414950181201044
Google Scholar
[3]
Alzaed, AN., Effect of iron filings in concrete compression and tensile strength. Int. J. Recent Dev. Eng. Technol. 3(4):121-125. 2014.
Google Scholar
[4]
Olaniyan, OS., Gbadero, OA., Obe, GS., and AbdulAzeez, MA., Influence of metal chips as a partial replacement for fine aggregate in concrete production. 4th International Conference on Engineering and Technology Research, Ladoke Akintola University, Ogbomoso. 23-25, 2016, pp.227-235.
Google Scholar
[5]
Adegoke, C.O., Available Alternative Energy Source for Domestic Use: A Case Study of Solar Cookers, Dryers and Sawdust Briquettes. Paper Work. 2003.
Google Scholar
[6]
Alexandru, R.S., Putting Sawdust to Work in Romanian. Planet's Voice Article, Planet Voice Org. 2002.
Google Scholar
[7]
Abdullah, Waleed R., Standard Sand Specifications Development by Mechanical Attrition Scrubbing to Make It Convenient for Cement Industry, Key Engineering Materials, Vol. 870, 2020, pp.61-70.
DOI: 10.4028/www.scientific.net/kem.870.61
Google Scholar
[8]
M.A., Schneider, T. Maeder, P. Ryser, F. Stoess, A micro reactor-based system for the study of fast exothermic reactions in liquid phase: characterization of the system, Chemical Engineering Journal 101 (1-3), 241-250. 2004.
DOI: 10.1016/j.cej.2003.11.005
Google Scholar
[9]
Dale, H., Huang, Thanh, N., Tran, Bao Yang, Investigation on the reaction of iron powder mixture as a portable heat source for thermoelectric power generators, 116:1047–1053 DOI: 10.1007/s10973-013-3619-9. 2014.
DOI: 10.1007/s10973-013-3619-9
Google Scholar
[10]
T., I., Shishelova, developing physical-chemical principles to manufacture effective heating systems when using mica, IOP Conf. Ser.: Mater. Sci. Eng. 667 012095, IOP Conference Series: Materials Science and Engineering. Doi:10.1088/1757-899X/667/1/012095. 2019.
DOI: 10.1088/1757-899x/667/1/012095
Google Scholar
[11]
Water Treatment and Conditioning of Commercial Heating Systems, Edition 1, Energy Association, www.icom.org.uk, @icomenergy. 2017.
Google Scholar
[12]
Jean Brainard, Ph.D., Exothermic Reactions http://www.ck12.org/terms. 2014.
Google Scholar
[13]
J. A. Hosely, J., Vanselow, R., Hower, R., Eds., Phys. of Solid Surfaces, VIII, Springer, Berlin. 1990.
Google Scholar
[14]
D.Yoo, S.S. Shiratori, and M.F. Rubner, J. Am. Chem. Soc. 120, 7626. 1998.
Google Scholar
[15]
G. Shaviv and N. J. Shaviva, J. Am. Chem. Soc. 529, 2000, p.1054 – 1069.
Google Scholar
[16]
T. Livench and M. Asciler, J. Phys. Chem., B. 103, 5665. 1999.
Google Scholar
[17]
Z. Aidom, and T. Marten, Apple. Therm. Eng. J., 22, 2002, p.1163 – 1173.
Google Scholar
[18]
A. Kumar, Chem. Rev. J., 101, 2001, p.1 – 19.
Google Scholar
[19]
P. A. Grieco, Inorg. Chem. J., 133. 1993.
Google Scholar
[20]
S. Sankarman, S. Neskamar and J.E. Roney, Envir. Chem. J. 57, P. 4. 2000.
Google Scholar
[21]
S. Kumar and W. Wongsuwan, J. Appl. Phs. Vol. 34, 2001, p.660 – 666.
Google Scholar