[1]
A. González-Garay et al., Plant-to-planet analysis of CO2-based methanol processes, Energy Environ. Sci. 12 (2019) 3425–3436.
DOI: 10.1039/C9EE01673B
Google Scholar
[2]
Manu Suvarna, et al., A generalized machine learning framework to predict the space-time yield of methanol from thermocatalytic CO2 hydrogenation, Appl. Catal. B: Environ. 315 (2022) 121530.
DOI: 10.1016/j.apcatb.2022.121530
Google Scholar
[3]
Andrés García-Trenco, Agustín Martínez, A simple and efficient approach to confine Cu/ZnO methanol synthesis catalysts in the ordered mesoporous SBA-15 silica, Catal. Today. Vol. 315 (2013) page 152-161.
DOI: 10.1016/j.cattod.2013.03.005
Google Scholar
[4]
Shyam Kattel et al., Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355 (2017) 1296-1299.
DOI: 10.1126/science.aal3573
Google Scholar
[5]
X. Jiang, et al., Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis, Chem. Rev. 120 (2020) 7984–8034, https://doi.org/.
DOI: 10.1021/acs.chemrev.9b00723
Google Scholar
[6]
D. Wu, et al., Understanding and application of strong metalsupport interactions in conversion of CO2 to methanol: a review, Energy Fuels 35 (2021) 19012–19023.
DOI: 10.1021/acs.energyfuels.1c02440
Google Scholar
[7]
X. Tang, et al., Effect of modifiers on the performance of Cu-ZnO-based catalysts for low-temperature methanol synthesis, J. Fuel Chem. Technol. 42 (2014) 704–709.
DOI: 10.1016/S1872-5813(14)60031-1
Google Scholar
[8]
A. Bansode, et al., Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure, Catal. Sci. Technol. 3 (2013) 767–778.
DOI: 10.1039/C2CY20604H
Google Scholar
[9]
A. Bansode, A. Urakawa, Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products, J. Catal. 309 (2014) 66–70, https://doi.org/.
DOI: 10.1016/j.jcat.2013.09.005
Google Scholar
[10]
T. Zou, et al., ZnO-promoted inverse ZrO2-Cu catalysts for CO2-based methanol synthesis under mild conditions, ACS Sustain, Chem. Eng. 10 (2021) 81–90, https://doi.org/10.1021/ acssuschemeng.1c04751.
DOI: 10.1021/acssuschemeng.1c04751
Google Scholar
[11]
M.S. Frei et al., Nanostructure of nickel-promoted indium oxide catalysts drives selectivity in CO2 hydrogenation, Nat. Commun. 12 (2021) 1960.
DOI: 10.1038/s41467-021-22224-x
Google Scholar
[12]
Z. Han, et al., Atomically dispersed Ptn+ species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation, J. Catal. 394 (2021) 236–244.
DOI: 10.1016/j.jcat.2020.06.018
Google Scholar
[13]
B. Hu, et al., Hydrogen spillover enabled active Cu sites for methanol synthesis from CO2 hydrogenation over Pd doped CuZn catalysts, J. Catal. 359 (2018) 17–26.
DOI: 10.1016/j.jcat.2017.12.029
Google Scholar
[14]
J. Barrera-García et al., Feature Selection Problem and Metaheuristics: A Systematic Literature Review about Its Formulation, Evaluation and Applications. Biomimetics 2024, 9, 9
DOI: 10.3390/biomimetics9010009
Google Scholar