Sustainable Biochar Production from Palm Kernel Shell through Slow Pyrolysis: A Life Cycle Assessment of Its Application as an Eco-Friendly Fertilizer

Abstract:

Palm Kernell Shell (PKS), a form of biomass waste can be transformed into higher-value products. In this study, PKS underwent pyrolysis process at various temperatures using a macro-thermogravimetry fixed-bed reactor. The research focuses on biochar production through slow pyrolysis and assesses the life cycle impact of biochar as a substitute for commercial fertilizer. The aim is to assess the effect of temperature variation on biochar properties and compare greenhouse gas (GHG) emissions between biochar-based and conventional fertilizers. The OpenLCA software was employed to conduct the life cycle assessment (LCA). The optimal temperature for biochar production through a slow pyrolysis process was identified as 450°C, yielding a carbon-to-nitrogen (C/N) ratio of 19.4. The study also investigated GHG emissions throughout the PKS lifecycle, involving oil palm cultivation, crude palm oil (CPO) milling, and biochar production through slow pyrolysis (cradle-to-gate). Substituting commercial NPK fertilizers with biochar in oil palm cultivation demonstrated significant reduction in GHG-related impacts, including global warming potential, acidification, eutrophication, and ecotoxicity by 3.6%, 20.7%, 10.7%, and 2.7% respectively.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Chemistry (Volume 13)

Pages:

69-82

Citation:

Online since:

February 2026

Export:

Share:

Citation:

* - Corresponding Author

[1] R.F. Follett, Global Climate Change, U.S. Agriculture, and Carbon Dioxide, Journal of Production Agriculture 6 (1993) 181–190.

DOI: 10.2134/jpa1993.0181

Google Scholar

[2] C.V. Cole, J. Duxbury, J. Freney, O. Heinemeyer, K. Minami, A. Mosier, K. Paustian, N. Rosenberg, N. Sampson, D. Sauerbeck, Q. Zhao, Global estimates of potential mitigation of greenhouse gas emissions by agriculture, Nutrient Cycling in Agroecosystems 49 (1997) 221–228.

DOI: 10.1023/A:1009731711346

Google Scholar

[3] H. Ritchie, M. Roser, Sector by sector: where do global greenhouse gas emissions come from?, Our World in Data (2024). https://ourworldindata.org/ghg-emissions-by-sector (accessed September 18, 2024).

Google Scholar

[4] K. Hasler, S. Bröring, S.W.F. Omta, H.-W. Olfs, Life cycle assessment (LCA) of different fertilizer product types, European Journal of Agronomy 69 (2015) 41–51.

DOI: 10.1016/j.eja.2015.06.001

Google Scholar

[5] R. Mateus, D. Kantur, D.L.M. Moy, Pemanfaatan Biochar Limbah Pertanian sebagai Pembenah Tanah untuk Perbaikan Kualitas Tanah dan Hasil Jagung di Lahan Kering, (2017) 10.

DOI: 10.17969/jimfp.v6i4.18385

Google Scholar

[6] K.Y. Chan, L. Van Zwieten, I. Meszaros, A. Downie, S. Joseph, Using poultry litter biochars as soil amendments, Soil Res. 46 (2008) 437.

DOI: 10.1071/SR08036

Google Scholar

[7] J.M. Fernández, M.A. Nieto, E.G. López-de-Sá, G. Gascó, A. Méndez, C. Plaza, Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers, Science of The Total Environment 482–483 (2014) 1–7.

DOI: 10.1016/j.scitotenv.2014.02.103

Google Scholar

[8] E. Erawati, W.B. Sediawan, P. Mulyono, KARAKTERISTIK BIO-OIL HASIL PIROLISIS AMPAS TEBU, Jurnal Kimia Terapan Indonesia 15 (2013) 47–55.

DOI: 10.14203/jkti.v15i2.113

Google Scholar

[9] A. Sharma, V. Pareek, D. Zhang, Biomass pyrolysis—A review of modelling, process parameters and catalytic studies, Renewable and Sustainable Energy Reviews 50 (2015) 1081–1096.

DOI: 10.1016/j.rser.2015.04.193

Google Scholar

[10] D. Harimurti, H. Hariyadi, E. Noor, Analisis sumber utama emisi gas rumah kaca pada perkebunan kelapa sawit dengan pendekatan life cycle assessment, JPLB (2019) 318–330.

DOI: 10.36813/jplb.3.2.318-330

Google Scholar

[11] G. Finnveden, M.Z. Hauschild, T. Ekvall, J. Guinée, R. Heijungs, S. Hellweg, A. Koehler, D. Pennington, S. Suh, Recent developments in Life Cycle Assessment, Journal of Environmental Management 91 (2009) 1–21.

DOI: 10.1016/j.jenvman.2009.06.018

Google Scholar

[12] L.D. Kasmiarno, J.K. Panannangan, S. Steven, J. Rizkiana, P. Hernowo, F. Achmad, O. Muraza, T. Prakoso, A.N. Istyami, M. Pratiwi, A. Aqsha, Y. Bindar, Exploration of bio-hydrocarbon gases production via pyrolysis of fresh natural rubber: Experimental and volatile state kinetic modeling studies, Journal of Analytical and Applied Pyrolysis (2023) 106275.

DOI: 10.1016/j.jaap.2023.106275

Google Scholar

[13] L.D. Kasmiarno, J. Rizkiana, T. Prakoso, A.N. Istyami, M. Pratiwi, Y. Bindar, Pyrolysis depolymerization of fresh natural rubber into liquid medium-chain bio-hydrocarbon products: Investigation of volatile-state kinetics approach and mechanism reaction analysis, Biomass and Bioenergy 197 (2025) 107840.

DOI: 10.1016/j.biombioe.2025.107840

Google Scholar

[14] S. Hansen, Feasibility Study of Performing an Life Cycle Assessment on Crude Palm Oil Production in Malaysia (9 pp), Int J Life Cycle Assessment 12 (2007) 50–58.

DOI: 10.1065/lca2005.08.226

Google Scholar

[15] H.M.A. Hakim, W. Supartono, A. Suryandono, Life Cycle Assessment Pada Pembibitan Kelapa Sawit Untuk Menghitung Emisi Gas Rumah Kaca, 39 (2014) 9.

Google Scholar

[16] G. Pehnelt, C. Vietze, Recalculating GHG emissions saving of palm oil biodiesel, Environ Dev Sustain 15 (2013) 429–479.

DOI: 10.1007/s10668-012-9387-z

Google Scholar

[17] S.S. Harsono, P. Grundman, L.H. Lau, A. Hansen, M.A.M. Salleh, A. Meyer-Aurich, A. Idris, T.I.M. Ghazi, Energy balances, greenhouse gas emissions and economics of biochar production from palm oil empty fruit bunches, Resources, Conservation and Recycling 77 (2013) 108–115.

DOI: 10.1016/j.resconrec.2013.04.005

Google Scholar

[18] E. Sari, Z. Muchtar, Rimrawarman, Konsumsi Air Dan Potensi Penghematan Pada Proses Produksi CPO PT. Perkebunan Nusantara V Pabrik CPO Sei Galuh, 2011.

Google Scholar

[19] H. Yang, R. Yan, H. Chen, D.H. Lee, D.T. Liang, C. Zheng, Mechanism of Palm Oil Waste Pyrolysis in a Packed Bed, Energy Fuels 20 (2006) 1321–1328.

DOI: 10.1021/ef0600311

Google Scholar

[20] F. Ronsse, S. van Hecke, D. Dickinson, W. Prins, Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions, GCB Bioenergy 5 (2013) 104–115.

DOI: 10.1111/gcbb.12018

Google Scholar

[21] L.P. Santi, PEMANFAATAN BIOCHAR ASAL CANGKANG KELAPA SAWIT SEBAGAI BAHAN PEMBAWA MIKROBA PEMANTAP AGREGAT, 12 (2012) 8.

Google Scholar

[22] B.B. Nyakuma, A. Johari, A. Ahmad, T.A.T. Abdullah, Comparative Analysis of the Calorific Fuel Properties of Empty Fruit Bunch Fiber and Briquette, Energy Procedia 52 (2014) 466–473.

DOI: 10.1016/j.egypro.2014.07.099

Google Scholar

[23] S. Wood, A. Cowie, A Review of Greenhouse Gas Emission Factors for Fertiliser Production, 2004.

Google Scholar

[24] A. Wallace, Soil acidification from use of too much fertilizer, Communications in Soil Science and Plant Analysis 25 (1994) 87–92.

DOI: 10.1080/00103629409369010

Google Scholar

[25] J.L. Gaunt, J. Lehmann, Energy Balance and Emissions Associated with Biochar Sequestration and Pyrolysis Bioenergy Production, Environ. Sci. Technol. 42 (2008) 4152–4158.

DOI: 10.1021/es071361i

Google Scholar

[26] C.V. Cole, J. Duxbury, J. Freney, O. Heinemeyer, K. Minami, A. Mosier, K. Paustian, N. Rosenberg, N. Sampson, D. Sauerbeck, Q. Zhao, Global estimates of potential mitigation of greenhouse gas emissions by agriculture, (1997) 8.

DOI: 10.1023/a:1009731711346

Google Scholar

[27] N. van Breemen, J. Mulder, C.T. Driscoll, Acidification and alkalinization of soils, Plant Soil 75 (1983) 283–308.

DOI: 10.1007/BF02369968

Google Scholar

[28] N. Larasati, S. Chasanah, S. Machmudah, S. Winardi, Studi Analisa Ekonomi Pabrik CPO (Crude Palm Oil) dan PKO (Palm Kernel Oil) Dari Buah Kelapa Sawit, JTITS 5 (2016) F212–F215.

DOI: 10.12962/j23373539.v5i2.16851

Google Scholar