Enhanced Humidity Sensing Properties of Sn-Doped ZnO Nanostructures on AZO/PET Substrates via Sol-Gel Immersion Method

Abstract:

This work reports the structural and humidity-sensing properties of Tin (Sn)-doped Zinc Oxide (ZnO) nanostructures deposited on Aluminum-doped Zinc Oxide/Polyethylene Terephthalate (AZO/PET) substrates via the sol-gel immersion method. Accordingly, X-ray Diffraction (XRD) and FESEM analyses confirmed that low-level Sn incorporation (1 at.%) enhanced the (002) orientation and crystallinity, while higher doping introduced lattice distortion and defects. Meanwhile, humidity sensing measurements revealed that undoped ZnO exhibited the highest sensitivity (178.5), though it recorded a very slow response (231 s) and recovery (648 s). In contrast, 1 at.% Sn-doped ZnO achieved a balanced performance, combining high sensitivity (144.4) with much faster response (121 s) and recovery (411 s). These results demonstrate that controlled Sn doping optimizes ZnO nanostructures for flexible humidity-sensing applications. Overall, the findings provide valuable insight for developing real-time environmental and wearable sensing devices, with future work focusing on stability testing and mechanical flexibility evaluation.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] C. Dubey, B. Kumar, Organic humidity sensors with different materials and its application in environment monitoring, in: 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), IEEE, 2018, p.1–6.

DOI: 10.1109/upcon.2018.8597009

Google Scholar

[2] F. Li, P. Li, H. Zhang, Preparation and research of a high-performance ZnO/SnO₂ humidity sensor, Sensors. 22 (1) (2022).

Google Scholar

[3] B.C. Anand, R. Shashidhar, N. Choudhary, Application of SRCBD S: SnO₂ nanostructured thin films as room temperature gas and humidity sensors, J. Korean Phys. Soc. 82 (4) (2023) 392–410.

DOI: 10.1007/s40042-022-00698-2

Google Scholar

[4] S. Yu, H. Zhang, C. Chen, C. Lin, Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle, Sens. Actuators B Chem. 287 (2019) 526-534.

DOI: 10.1016/j.snb.2019.02.089

Google Scholar

[5] X.T.Y. Gu, Z. Ye, N. Sun, X. Kuang, W. Liu, X. Song, L. Zhang, W. Bai, Preparation and properties of humidity sensor based on K-doped ZnO nanostructure, J. Mater. Sci. Mater. Electron. 30 (20) (2019) 18767–18779.

DOI: 10.1007/s10854-019-02230-y

Google Scholar

[6] C.-C. Chou, L.-H. Shih, S.-J. Chang, The study of humidity sensor based on Li-doped ZnO nanorods by hydrothermal method, Microsyst. Technol. 28 (1) (2022) 423–427.

DOI: 10.1007/s00542-020-04957-9

Google Scholar

[7] R.C.H. Li, B. Meng, H. Jia, D. Wang, Z. Wei, R. Li, Optical humidity sensor based on ZnO nanomaterials, in: 2020 IEEE 5th Optoelectronics Global Conference (OGC), IEEE, 2020, p.169–172.

DOI: 10.1109/ogc50007.2020.9260472

Google Scholar

[8] R.M. Akhir, W.M.W. Harrum, I. Buniyamin, M. Rusop, Z. Khusaimi, Enhanced structural and morphological properties of ZnO nanorods using plant extract-assisted solution immersion method, Mater. Today Proc. 48 (2022) 1855–1860.

DOI: 10.1016/j.matpr.2021.09.205

Google Scholar

[9] J. Soudi, S.K.M., S.B.K., P.S. Patil, S.R. Maidur, B.K.M., Thermo-optic effects mediated self-focusing mechanism and optical power limiting studies of ZnO thin films deposited on ITO coated PET substrates by RF magnetron sputtering under continuous wave laser regime, Optik (Stuttg.) 225 (2021) 165835.

DOI: 10.1016/j.ijleo.2020.165835

Google Scholar

[10] R.S.M.V. Arularasu, R. Vignesh, T.V. Rajendran, PVDF/ZnO hybrid nanocomposite applied as a resistive humidity sensor, Surf. Interfaces 21 (2020) 100780.

DOI: 10.1016/j.surfin.2020.100780

Google Scholar

[11] M. Bai, M. Chen, X. Li, Q. Wang, One-step CVD growth of ZnO nanorod/SnO₂ film heterojunction for NO₂ gas sensor, Sens. Actuators B Chem. 373 (2022).

DOI: 10.1016/j.snb.2022.132738

Google Scholar

[12] L. Niu, S. Hong, M. Wang, Properties of ZnO with oxygen vacancies and its application in humidity sensor, J. Electron. Mater. 50 (8) (2021) 4480–4487.

DOI: 10.1007/s11664-021-08966-w

Google Scholar

[13] L.A.N. Üzar, G. Algün, N. Akçay, D. Akcan, Structural, optical, electrical and humidity sensing properties of (Y/Al) co-doped ZnO thin films, J. Mater. Sci. Mater. Electron. 28 (16) (2017) 11861–11870.

DOI: 10.1007/s10854-017-6994-3

Google Scholar

[14] G. Algün, N. Akçay, Enhanced sensing characteristics of relative humidity sensors based on Al and F co-doped ZnO nanostructured thin films, J. Mater. Sci. Mater. Electron. 30 (17) (2019) 16124–16134.

DOI: 10.1007/s10854-019-01982-x

Google Scholar

[15] D. Brzezińska, D. Bochenek, M. Zubko, P. Niemiec, I. Matuła, Properties of Sn-doped PBZT ferroelectric ceramics sintered by hot-pressing method, Mater. 17 (20) (2024).

DOI: 10.3390/ma17205072

Google Scholar

[16] R. Brahem, H. Rahmouni, N. Farhat, J. Dhahri, K. Khirouni, L.C. Costa, Electrical properties of Sn-doped Ba₀.₇₅Sr₀.₂₅Ti₀.₉₅O₃ perovskite, Ceram. Int. 40 (7A) (2014) 9355–9360.

DOI: 10.1016/j.ceramint.2014.02.002

Google Scholar

[17] T. Habeeb, A. Almalki, A.H. Bashal, Synthesis, structural modification, and dielectric property enhancement of manganese and tin-doped bentonite composites for high-performance energy storage applications, Arab. J. Chem. 18 (2024) 2012024.

DOI: 10.25259/ajc_201_2024

Google Scholar

[18] T. Tamai, M. Watanabe, Y. Kobayashi, Y. Nakahara, S. Yajima, Surface modification of PEN and PET substrates by plasma treatment and layer-by-layer assembly of polyelectrolyte multilayer thin films and their application in electroless deposition, RSC Adv. 7 (53) (2017) 33155–33161.

DOI: 10.1039/c7ra04880g

Google Scholar

[19] K. Lazarova, S. Bozhilova, S. Ivanova, D. Christova, T. Babeva, Flexible and transparent polymer-based optical humidity sensor, Sensors 21 (11) (2021).

DOI: 10.3390/s21113674

Google Scholar

[20] H. Yan, Z. Chen, L. Zeng, Z. Wang, G. Zheng, R. Zhou, The effect of rGO-doping on the performance of SnO₂/rGO flexible humidity sensor, Nanomaterials 11 (12) (2021).

DOI: 10.3390/nano11123368

Google Scholar

[21] N. Parimon, et al., Annealing temperature dependency of structural, optical and electrical characteristics of manganese-doped nickel oxide nanosheet array films for humidity sensing applications, Nanomater. Nanotechnol. 11 (2021) 1847980420982788.

DOI: 10.1177/1847980420982788

Google Scholar

[22] A.S. Ismail, M.H. Mamat, M.M. Yusoff, M.F. Malek, A.S. Zoolfakar, R.A. Rani, A.B. Suriani, A. Mohamed, M.K. Ahmad, M. Rusop, Enhanced humidity sensing performance using Sn-doped ZnO nanorod array/SnO₂ nanowire heteronetwork fabricated via two-step solution immersion, Mater. Lett. 210 (2018) 258–262.

DOI: 10.1016/j.matlet.2017.09.040

Google Scholar

[23] M.R.A.S. Ismail, M.H. Mamat, I.B. Shameem Banu, R. Amiruddin, M.F. Malek, N. Parimon, A.S. Zoolfakar, N.D. Md. Sin, A.B. Suriani, M.K. Ahmad, Structural modification of ZnO nanorod array through Fe-doping: Ramification on UV and humidity sensing properties, Nano-Struct. Nano-Objects 18 (2019) 100262.

DOI: 10.1016/j.nanoso.2019.100262

Google Scholar

[24] N.A.M. Asib, M.H. Mamat, M. Rusop, Z. Khusaimi, Investigation on properties of ZnO nanorods grown at different immersion time on TiO₂ seed layer, AIP Conf. Proc. 2151 (1) (2019) 020015.

DOI: 10.1063/1.5124645

Google Scholar

[25] A.S. Ismail, M.H. Mamat, M.F. Malek, S.A. Saidi, M.M. Yusoff, R. Mohamed, N.D. Md. Sin, A.B. Suriani, M. Rusop, Structural, optical, and electrical properties of Ni-doped ZnO nanorod arrays prepared via sonicated sol–gel immersion method, AIP Conf. Proc. 1963 (1) (2018) 020029.

DOI: 10.1063/1.5036875

Google Scholar

[26] L. Xu, G. Zheng, F. Xian, J. Su, The morphological evolution of ZnO thin films by Sn ions doping and its influence on the surface energy and photocatalytic activity, Mater. Chem. Phys. 229 (2019) 215–225.

DOI: 10.1016/j.matchemphys.2019.03.011

Google Scholar

[27] H. Wang, R. Bhattacharjee, I.-M. Hung, L. Li, R. Zeng, Material characteristics and electrochemical performance of Sn-doped ZnO spherical-particle photoanode for dye-sensitized solar cells, Electrochim. Acta 111 (2013) 797–801.

DOI: 10.1016/j.electacta.2013.07.199

Google Scholar

[28] I. Saurdi, M.H. Mamat, M.F. Malek, M. Rusop, Preparation of aligned ZnO nanorod arrays on Sn-doped ZnO thin films by sonicated sol–gel immersion fabricated for dye-sensitized solar cell, Adv. Mater. Sci. Eng. 2014 (2014) 636725.

DOI: 10.1155/2014/636725

Google Scholar

[29] G. Algün, M. Alshater, N. Akçay, Improved humidity sensing performances of boron doped ZnO nanostructured thin films depending on boron concentration, Phys. Scr. 99 (5) (2024).

DOI: 10.1088/1402-4896/ad3868

Google Scholar

[30] M.D.B., M.R.M.A. Shamsul Rahimi A. Subki, M.H. Mamat, M.M. Zahidi, M.H. Abdullah, B. Shameem Banu, N. Vasimalai, M.K. Ahmad, N. Nayan, S.A. Bakar, A. Mohamed, Optimization of aluminum dopant amalgamation immersion time on structural, electrical, and humidity-sensing attributes of pristine ZnO for flexible humidity sensor application, Chemosensors 10 (11) (2022).

DOI: 10.3390/chemosensors10110489

Google Scholar

[31] J.-H. Lee, B.-O. Park, Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method, Thin Solid Films 426 (1) (2003) 94–99.

DOI: 10.1016/s0040-6090(03)00014-2

Google Scholar

[32] S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lupan, Sensing characteristics of tin-doped ZnO thin films as NO₂ gas sensor, Sens. Actuators B Chem. 107 (1) (2005) 379–386.

DOI: 10.1016/j.snb.2004.10.030

Google Scholar

[33] P. Zhang, G. Pan, B. Zhang, J. Zhen, Y. Sun, High sensitivity ethanol gas sensor based on Sn-doped ZnO under visible light irradiation at low temperature, Mater. Res. 17 (2014) 817–822.

DOI: 10.1590/1516-1439.235713

Google Scholar

[34] Z. Feng, A. Gaiardo, M. Valt, B. Fabbri, D. Casotti, S. Krik, L. Vanzetti, M. Della Ciana, S. Fioravanti, S. Caramori, V. Guidi, Investigation on sensing performance of highly doped Sb/SnO₂, Sensors 22 (3) (2022).

DOI: 10.3390/s22031233

Google Scholar

[35] N. Munna, R. Abdur, S.F.U. Farhad, R. Islam, M.S. Bashar, M. Kamruzzaman, S. Aziz, M.A.A. Shaikh, M. Hossain, M.S. Jamal, Influence of Sn doping on the optoelectronic properties of ZnO nanoparticles, Nanoscale Adv. 5 (18) (2023) 4996–5004.

DOI: 10.1039/d3na00409k

Google Scholar