[1]
Bell AT. The Impact of Nanoscience on Heterogeneous Catalysis. Science. 2003; 299: 1688-91.
Google Scholar
[2]
Yudanov IV, Metzner M, Genest A, Rösch N. Size-Dependence of Adsorption Properties of Metal Nanoparticles: A Density Functional Study on Palladium Nanoclusters. The Journal of Physical Chemistry C. 2008; 112: 20269-75.
DOI: 10.1021/jp8075673
Google Scholar
[3]
Phala NS, Klatt G, Steen Ev. A DFT study of hydrogen and carbon monoxide chemisorption onto small gold clusters. Chemical Physics Letters. 2004; 395: 33-7.
DOI: 10.1016/j.cplett.2004.07.065
Google Scholar
[4]
Wopperer P, Dinh PM, Reinhard PG, Suraud E. Electrons as probes of dynamics in molecules and clusters: A contribution from Time Dependent Density Functional Theory. Physics Reports. 2015; 562: 1-68.
DOI: 10.1016/j.physrep.2014.07.003
Google Scholar
[5]
Peruzzini M, Caporali M. Preface to the cluster issue: Advances in transition metal catalysis. Inorganica Chimica Acta. 2015; 431: 1-2.
DOI: 10.1016/j.ica.2015.05.015
Google Scholar
[6]
Liu C, Liu H, Yin C, Zhao X, Liu B, Li X, et al. Preparation, characterization, and hydrodesulfurization properties of binary transition-metal sulfide catalysts. Fuel. 2015; 154: 88-94.
DOI: 10.1016/j.fuel.2015.03.034
Google Scholar
[7]
Sahu R, Song BJ, Im JS, Jeon Y-P, Lee CW. A review of recent advances in catalytic hydrocracking of heavy residues. Journal of Industrial and Engineering Chemistry. 2015; 27: 12-24.
DOI: 10.1016/j.jiec.2015.01.011
Google Scholar
[8]
Niaz S, Manzoor T, Pandith AH. Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews. 2015; 50: 457-69.
DOI: 10.1016/j.rser.2015.05.011
Google Scholar
[9]
van Helden P, van den Berg J-A, Weststrate CJ. Hydrogen Adsorption on Co Surfaces: A Density Functional Theory and Temperature Programmed Desorption Study. ACS Catalysis. 2012; 2: 1097-107.
DOI: 10.1021/cs2006586
Google Scholar
[10]
Nakhaei Pour A, Housaindokht MR. Study of activity, products selectivity and physico-chemical properties of bifunctional Fe/HZSM-5 Fischer–Tropsch catalyst: Effect of catalyst shaping. Journal of Natural Gas Science and Engineering. 2013; 14: 29-33.
DOI: 10.1016/j.jngse.2013.04.004
Google Scholar
[11]
Van Der Laan GP, Beenackers AACM. Kinetics and Selectivity of the Fischer–Tropsch Synthesis: A Literature Review. Catalysis Reviews. 1999; 41: 255-318.
DOI: 10.1081/cr-100101170
Google Scholar
[12]
Nakhaei Pour A, Khodabandeh H, Izadyar M, Housaindokht MR. Mechanistic double ASF product distribution study of Fischer–Tropsch synthesis on precipitated iron catalyst. Journal of Natural Gas Science and Engineering. 2013; 15: 53-8.
DOI: 10.1016/j.jngse.2013.09.005
Google Scholar
[13]
Prieto G, Martínez A, Concepción P, Moreno-Tost R. Cobalt particle size effects in Fischer–Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts. Journal of Catalysis. 2009; 266: 129-44.
DOI: 10.1016/j.jcat.2009.06.001
Google Scholar
[14]
Nakhaei Pour A, Housaindokht M, Behroozsarand A, Khodagholi M. Thermodynamic analysis of nanoparticle size effect on kinetics in Fischer–Tropsch synthesis by lanthanum promoted iron catalyst. Applied Physics A. 2014; 116: 789-97.
DOI: 10.1007/s00339-013-8156-7
Google Scholar
[15]
Nakhaei Pour A, Housaindokht M. Fischer–Tropsch Synthesis Over CNT Supported Cobalt Catalysts: Role of Metal Nanoparticle Size on Catalyst Activity and Products Selectivity. Catal Lett. 2013; 143: 1328-38.
DOI: 10.1007/s10562-013-1070-y
Google Scholar
[16]
Barbier A, Tuel A, Arcon I, Kodre A, Martin GA. Characterization and Catalytic Behavior of Co/SiO2 Catalysts: Influence of Dispersion in the Fischer–Tropsch Reaction. Journal of Catalysis. 2001; 200: 106-16.
DOI: 10.1006/jcat.2001.3204
Google Scholar
[17]
Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, et al. Cobalt Particle Size Effects in the Fischer−Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts. Journal of the American Chemical Society. 2006; 128: 3956-64.
DOI: 10.1021/ja058282w
Google Scholar
[18]
Bezemer GL, Remans TJ, van Bavel AP, Dugulan AI. Direct Evidence of Water-Assisted Sintering of Cobalt on Carbon Nanofiber Catalysts during Simulated Fischer−Tropsch Conditions Revealed with in Situ Mössbauer Spectroscopy. Journal of the American Chemical Society. 2010; 132: 8540-1.
DOI: 10.1021/ja103002k
Google Scholar
[19]
Buendía F, Beltrán MR. Theoretical study of hydrogen adsorption on Co clusters. Computational and Theoretical Chemistry. 2013; 1021: 183-90.
DOI: 10.1016/j.comptc.2013.07.012
Google Scholar
[20]
Lewis EA, Le D, Murphy CJ, Jewell AD, Mattera MFG, Liriano ML, et al. Dissociative Hydrogen Adsorption on Close-Packed Cobalt Nanoparticle Surfaces. The Journal of Physical Chemistry C. 2012; 116: 25868-73.
DOI: 10.1021/jp3090414
Google Scholar
[21]
Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter. 2009; 21: 395502.
DOI: 10.1088/0953-8984/21/39/395502
Google Scholar
[22]
Bromfield TC, Curulla Ferré D, Niemantsverdriet JW. A DFT Study of the Adsorption and Dissociation of CO on Fe(100): Influence of Surface Coverage on the Nature of Accessible Adsorption States. ChemPhysChem. 2005; 6: 254-60.
DOI: 10.1002/cphc.200400452
Google Scholar
[23]
Parmon VN. Thermodynamic analysis of the effect of the nanoparticle size of the active component on the adsorption equilibrium and the rate of heterogeneous catalytic processes. Dokl Phys Chem. 2007; 413: 42-8.
DOI: 10.1134/s0012501607030025
Google Scholar
[24]
Lin X, Ramer NJ, Rappe AM, Hass KC, Schneider WF, Trout BL. Effect of Particle Size on the Adsorption of O and S Atoms on Pt: A Density-Functional Theory Study. The Journal of Physical Chemistry B. 2001; 105: 7739-47.
DOI: 10.1021/jp011133p
Google Scholar
[25]
Kittel C. Introduction to Solid State Physics. Hoboken: John Wiley & Sons; (2005).
Google Scholar
[26]
Yudanov IV, Genest A, Schauermann S, Freund H-J, Rösch N. Size Dependence of the Adsorption Energy of CO on Metal Nanoparticles: A DFT Search for the Minimum Value. Nano Letters. 2012; 12: 2134-9.
DOI: 10.1021/nl300515z
Google Scholar
[27]
Klinke Ii DJ, Broadbelt LJ. A theoretical study of hydrogen chemisorption on Ni(111) and Co(0001) surfaces. Surface Science. 1999; 429: 169-77.
DOI: 10.1016/s0039-6028(99)00363-5
Google Scholar
[28]
Liao X-Y, Wang S-G, Ma Z-Y, Wang J, Li Y-W, Jiao H. Density functional theory study of H2 adsorption on the (1 0 0), (0 0 1) and (0 1 0) surfaces of Fe3C. Journal of Molecular Catalysis A: Chemical. 2008; 292: 14-20.
DOI: 10.1016/j.molcata.2008.06.007
Google Scholar
[29]
Hammer B, Nørskov JK. Theoretical surface science and catalysis—calculations and concepts. In: Bruce C. Gates HK, editor. Advances in Catalysis: Academic Press; 2000: 71-129.
DOI: 10.1016/s0360-0564(02)45013-4
Google Scholar
[30]
Nakhaei Pour A, Keyvanloo Z, Izadyar M, Modaresi SM. Dissociative hydrogen adsorption on the cubic cobalt surfaces: A DFT study. International Journal of Hydrogen Energy; 2015; 40: 7064-71.
DOI: 10.1016/j.ijhydene.2015.04.028
Google Scholar