The Current Research Status of PLGA as Drug and Gene Carrier

Article Preview

Abstract:

PLGA, poly (lactic-co-glycolic-acid), is a kind of biodegradable functional macromolecular organic compounds. PLGA, certified by the Food and Drug Administration (FDA), possesses desirable features of biocompatibility, nontoxicity and no immune response, and is being widely applied to human clinical medical research. Because of its biodegradability, simple synthetic methods, controllability of degrading rate and desirable plasticity, PLGA was applied in large quantity into the carrier materials which is to control the release in recent years, gradually propelling PLGA microsphere controlled release system to be the most ideal drug-carrier system at present. As the carrier of drug and genes, PLGA is mainly researched on its features as the carrier, synthetic methods, different surface modification methods, and the applications on different drugs, genetic treatments and genetic vaccines.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-91

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Wang, L. Pan and Y.G. Zhang. Research Progress on PLGA Nanoparticles/Microspheres as DNA Carriers, Microbiology, 36(2009) 1901-(1908).

Google Scholar

[2] J. Schaieders, U. Gbureck, R. Thull and T. Kissel. Controlled release of geatamicin from calcium phosphate-poly (lactic acid-co-glycolic acid) composite bone cement, Biomaterials, 27(2006) 4239-4249.

DOI: 10.1016/j.biomaterials.2006.03.032

Google Scholar

[3] R.A. Jain. The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices, Biomaterials, 21(2000) 2475-2490.

DOI: 10.1016/s0142-9612(00)00115-0

Google Scholar

[4] S. Freiberg and X. Zhu. Polymer microspheres for controlled drug release. Int. J. Pharm, 282(2004)1-18.

Google Scholar

[5] A. Porjazoska, K. Goracinova, M. Glavas, M. Glavas, M. Simonovska, E.I. Janjević and M. Cvetkovska. Poly (lactic-co-glycolide) micropartiles as systems for controlled release of proteins-preparation and characterization, Acta Pharm, 54(2004).

Google Scholar

[6] S.R. Mao, J. Xu, C. Cai, O. Germerters, A. Schaper and T. Kissel. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres, Int J Pharmaceut, 334(2007)137-148.

DOI: 10.1016/j.ijpharm.2006.10.036

Google Scholar

[7] W. Jiang, R.K. Gupta, M.C. Deshpande and S.P. Schwendeman. Biodegradable poly (lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens, Adv Drug Deliv Rev, 57(2005)391-410.

DOI: 10.1016/j.addr.2004.09.003

Google Scholar

[8] U. Bilati, E. Allemann and E. Doelker. Strategic approaches for overcoming peptide and protein instability with biodegrable nano and microparticles, Eur J Pharm Biopharm, 59(2005) 375-388.

DOI: 10.1016/j.ejpb.2004.10.006

Google Scholar

[9] N.A. Rahman and E. Mathiowitz. Localization of bovine serum albumin in double – walled microspheres, J Control Release, 94(2004)163-175.

DOI: 10.1016/j.jconrel.2003.10.010

Google Scholar

[10] Y. Yeo and K. Park. Control of Encapsulation efficacy and initral burst in polymeric microspartide system, Arch Pharm Res, 27(2004)1-12.

Google Scholar

[11] A. Aubert- Pouëssel, M.C. Venier – Julienne, P. Saulnier, M. Sergent and J.P. Benoît. Preparation of PLGA microparticles by an emulsion – extraction process using glycofurol as polymer solvent, Pharm Res, 21(2004)2384-2391.

DOI: 10.1007/s11095-004-7693-3

Google Scholar

[12] M.J. Whitaker, J. Hao, O.R. Daives, G. Serhatkulu, S. Stolnik-Trenkic, S.M. Howdle and K.M. Shakesheff. The production of protein-loaded microparticles by supercritical fluid enhanced mixing and spraying, J Control Release, 101(2005)85-92.

DOI: 10.1016/j.jconrel.2004.07.017

Google Scholar

[13] E.S. Lee, K.H. Park, D. Kang, H.Y. Min, D.H. Lee, S. Kim, J.H. Kim and K. Na. Protein complexed with chondroitin sulfate in poly(lactide-co-glycolide) microspheres, Biomaterials, 28(2007)2754-2762.

DOI: 10.1016/j.biomaterials.2007.01.049

Google Scholar

[14] Y. Hong, C. Gao, Y. Xie, Y. Gong and J. Shen. Collagen-coated polylactide microspheres as chondrocyte microcarriers, Biomaterial, 26(2005)6305-6313.

DOI: 10.1016/j.biomaterials.2005.03.038

Google Scholar

[15] F. Gabler, S. Frauenschun, J. Ringe, C. Brochhausen, P. Götz, C.J. Kirkpatrick, M. Sittinger, H. Schubert and R. Zehbe. Emulsion-based synthesis of PLGA microspheres for the in vitro expansion of porcine chondrocytes, Biomol Eng, 24(2007).

DOI: 10.1016/j.bioeng.2007.08.013

Google Scholar

[16] S. Freitas, H.P. Merkle and B. Gander. Microencapsulation by solvent extraction /evaporation: reviewing the state of the art of microsphere preparation process technology, J Controlled Release, 102(2005) 313 -332.

DOI: 10.1016/j.jconrel.2004.10.015

Google Scholar

[17] F.J. Hua, T.G. Park and D.S. Lee. A facile preparation of highly interconnected macroporous poly (D, L-lactic acid-co-glycolic acid) (PLGA) scaffolds by liquid-liquid phase separation of a PLGA-dioxane-water ternary system. Polymer, 44 (2003).

DOI: 10.1016/s0032-3861(03)00025-9

Google Scholar

[18] P.D. Graham, K.J. Brodbeck and A.J. McHugh. Phase inversion dynamics of PLGA solutions related to drug delivery. J Control Release, 58 (1999)233-245.

DOI: 10.1016/s0168-3659(98)00158-8

Google Scholar

[19] M.L. Hans and.M. Lowman. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci, 6 (2002)319-327.

DOI: 10.1016/s1359-0286(02)00117-1

Google Scholar

[20] A. Maczurek, K. Hager, M. Kenklies, M. Sharman, R. Martins, J. Engel, D.A. Carlson and G. Münch. Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer's disease, Adv Drug Deliv Rev, 60(2008)1463−1470.

DOI: 10.1016/j.addr.2008.04.015

Google Scholar

[21] R.C. Mundargi, V.R. Babu, V. Rangaswamy, P. Patel and T.M. Aminabhavi. Nano/micro technologies for delivering macromolecular therapeutics using poly (D, L-lactide-co-glycolide) and its derivatives, J Control Release, 125(2008) 193−209.

DOI: 10.1016/j.jconrel.2007.09.013

Google Scholar

[22] H. Mok, J.W. Park and T.G. Park. Microencapsulation of PEGylated adenovirus within PLGA microspheres for enhanced stability and gene transfection efficiency, Pharm Res, 24(2007)2263−2269.

DOI: 10.1007/s11095-007-9441-y

Google Scholar

[23] N. Csaba, A. Sánchez and M.J. Alonso. PLGA: poloxamer and PLGA: poloxamine blend nanos- tructures as carriers for nasal gene delivery, J Control Release, 113(2006)164−172.

DOI: 10.1016/j.jconrel.2006.03.017

Google Scholar

[24] X. Sun, Y.R. Duan, Q. He, J. Lu and Z.R. Zhang. PELGE nanoparticles as new carriers for the delivery of plasmid DNA, Chem Pharm Bull, 53(2005)599−603.

DOI: 10.1248/cpb.53.599

Google Scholar

[25] T. Kissel, Y.X. Lee and C. Volland. Parenteral protein delivery systems using biodegradable polyesters of ABA block structure, containing hydrophobic poly(lactide-co-glycolide) A blocks and hydrophilic poly(ethylene oxide) B blocks , J Control Release, 39 (1996).

DOI: 10.1016/0168-3659(95)00163-8

Google Scholar

[26] S. Moffatt and R.J. Cristiano. PEGylated J591 mAb loaded in PLGA-PEG-PLGA tri-block copolymer for targeted delivery: in vitro evaluation in human prostate cancer cells, Int J Pharm, 317 (2006)10−13.

DOI: 10.1016/j.ijpharm.2006.04.011

Google Scholar

[27] S. Moffatt, D. Choi, W.J. Kim, J.W. Yockman, L.V. Christensen, Y.H. Kim and S.W. Kim. Non-ionic amphiphilic biodegradable PEG-PLGA-PEG copolymer enhances gene delivery efficiency in rat skeletal muscle, J Control Release, 118(2007)245−253.

DOI: 10.1016/j.jconrel.2006.11.025

Google Scholar

[28] J.D. Lathia, L. Leodore and M.A. Wheatley. Polymeric contrast agent with targeting potential, Ultrasonics, 42 (2004) 763-768.

DOI: 10.1016/j.ultras.2003.12.018

Google Scholar

[29] M. Garinot, V. Fiévez, V. Pourcelle, F. Stoffelbach, A. des Rieux, L. Plapied, I. Theate, H. Freichels, C. Jérôme, J. Marchand-Brynaert, Y.J. Schneider and V. Préat. PEGylated PLGA- based nanoparticles targeting M cells for oral vaccination, J Control Release, 120(2007).

DOI: 10.1016/j.jconrel.2007.04.021

Google Scholar

[30] S. Díez, G. Navarro and C.T. de ILarduya. In vivo targeted gene delivery by cationic nanoparticles for treatment of hepatocellular carcinoma, J Gene Med, 11(2009)38−45.

DOI: 10.1002/jgm.1273

Google Scholar

[31] M. Singh, M. Ugozzoli, M. Briones, J. Kazzaz, E. Soenawan and D.T. Hagan. The effect of CTAB concentration in cationic PLG microparticles on DNA adsorption and in vivo performance, Pharm Res, 20(2003)247−251.

DOI: 10.1023/a:1022327305369

Google Scholar

[32] F.F. Zhuang, R. Liang, C.T. Zou, H. Ma, C.X. Zheng and M.X. Duan. High efficient encapsulation of plasmid DNA in PLGA microparticles by organic phase self-emulsification, J Biochem Biophys Methods, 52(2002)169−178.

DOI: 10.1016/s0165-022x(02)00073-8

Google Scholar

[33] K. Tahara, T. Sakai, H. Yamamoto, H. Takeuchi and Y. Kawashima. Establishing chitosan coated PLGA nanosphere platform loaded with wide variety of nucleic acid by complexation with cationic compound for gene delivery, Int J Pharm, 354(2008).

DOI: 10.1016/j.ijpharm.2007.11.002

Google Scholar

[34] S. Jeremy, W. Blum and M. Saltzman. High loading efficiency and tunable release of plasmid DNA encapsulated in submicron particles fabricated from PLGA conjugated with poly-L-lysine , J Control Release, 129(2008)66−72.

DOI: 10.1016/j.jconrel.2008.04.002

Google Scholar

[35] S. Fischer, C. Foerg, H.P. Merkle, H.P. Merkle and B. Gander. One-step preparation of polyelectrolyte -coated PLGA microparticles and their functionalization with model ligands, J Control Release, 111(2006) 135−144.

DOI: 10.1016/j.jconrel.2005.11.015

Google Scholar

[36] S.P. Kasturi, K. Sachaphibulkij and K. Roy. Covalent conjugation of polyethyleneimine on biode- gradable microparticles for delivery of plasmid DNA vaccines, Biomaterials, 26(2005)6375−6385.

DOI: 10.1016/j.biomaterials.2005.03.043

Google Scholar

[37] M. Andersen, A. Lichawska, A. Arpanaei, S.M. Rask Jensen, H. Kaur, D. Oupicky, F. Besenbacher, P. Kingshott, J. Kjems and KA. Howard. Surface functionalisation of PLGA nanoparticles for gene silencing, Biomaterials, 31(2010)5671−5677.

DOI: 10.1016/j.biomaterials.2010.03.069

Google Scholar

[38] A.J. Gomes, L.O. Lunardi, J.M. Marchetti, C.N. Lunardi and A.C. Tedesco. Indocyanine green nanoparticles useful for photomedicine, Photomed Laser Surg, 24(2006)514-521.

DOI: 10.1089/pho.2006.24.514

Google Scholar

[39] D. Moreno, S. Zalba, I. Navarro, C. de Ilarduya and M.J. Garrido. Pharmacodynamics cisplatin-loaded PLGA nanoparticles administered to tumor-bearing mice. Eur J Pharm Biopharm, 74 (2010) 265-274.

DOI: 10.1016/j.ejpb.2009.10.005

Google Scholar

[40] L. Vicari, T. Musumeci, I. Giannone, L. Adamo, C. Conticello, R. de Maria, R. Pignatello, G. Puglisi and M. Gulisano. Paclitaxel loading in PLGA nanospheres affected the in vitro drug cell accumulation and antiproliferative activity. BMC Cancer, 8 (2008).

DOI: 10.1186/1471-2407-8-212

Google Scholar

[41] P. Anand, H.B. Nair, B. Sung, A.B. Kunnumakkara, V.R. Yadav, R.R. Tekmal and B.B. Aggarwal. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol, 79(2010).

DOI: 10.1016/j.bcp.2015.11.008

Google Scholar

[42] J. Shaikha, D.D. Ankolab, V. Beniwal, D. Singh and M.N. Kumar. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci, 37(2009).

DOI: 10.1016/j.ejps.2009.02.019

Google Scholar

[43] M.M. Yallapu, D.M. Maher, V. Sundram, M. Jaggi and S.C. Chauhan. Curcumin induces chemo/radio- sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth , J Ovarian Res, 29(2010)11.

DOI: 10.1186/1757-2215-3-11

Google Scholar

[44] R.L. Sastre, R. Olmo, C. Teijón, E. Muñíz, J.M. Teijón and M.D. Blanco. 5-Fluorouracil plasma levels and biodegradation of subcutaneously injected drug-loaded microspheres prepared by spray-drying poly (D, L-lactide) and poly (D, L-lactide-co-glycolide) polymers. Int J Pharm, 338 (2007).

DOI: 10.1016/j.ijpharm.2007.02.001

Google Scholar

[45] J.Q. Li, R. Li, Y.X. Xu and S.L. Wang. Effect of Delayed-Release PLGA-5-Fluorouracil Microsphere on Colorectal Cancer Xenograft in Nude Mice. Acta Laboratorium Animalis Scientia Sinica, 17(2009) 81-84.

Google Scholar

[46] M. Reni, W. Mason, F. Zaja, E. Muñíz, J.M. Teijón and M.D. Blanco. Salvage chemotherapy with temozolomide in primary CNS lymphomas: preliminary results of a phase II trial. Eur J Cancer, 40(2004) 1682-1688.

DOI: 10.1016/j.ejca.2004.03.008

Google Scholar

[47] H. Zhang and S. Gao. Temozolomide/PLGA micropartieles and antitumor activity against glioma C6 cancer cells in vitro. Int J Pharm, 329(2007) 122-128.

DOI: 10.1016/j.ijpharm.2006.08.027

Google Scholar

[48] L. Bie, H.Y. Yuan, X. Wang, G. Zhao and X.J. Liu. Preparation, Release-control and Cell Apoptosis of C6 Glioma Cells in PEG-PLGA-Rg3 Nanoparticles, Chem Res Chinese U, 26(2010)780-784.

Google Scholar

[49] H.L. Jiang. Improvement of protein loading and modulation of protein release from poly (lactide-co-glycolide) microspheres by complexation of proteins with polyanions, J Microencapsul, 21(2004) 615-624.

DOI: 10.1080/02652040400000538

Google Scholar

[50] P.S. Kumar, S. Ramakrishna, T.R. Saini and P.V. Diwan. Influence of microencapsulation method and peptide loading on formulation of poly (lactide-co-glycolide) insulin nanoparticles, Pharmazie, 61(2006) 613-617.

Google Scholar

[51] D.J. Gary, N. Puri and Y.Y. Won. Polymer-based siRNA delivery: perspectives on the funda- mental and phenomenological distinctions from polymer-based DNA delivery, J Control Release, 121(2007)64−73.

DOI: 10.1016/j.jconrel.2007.05.021

Google Scholar

[52] W. W Zou and N. Zhang. Research progress of PLGA nanoparticle as non-viral gene delivery system, Chemistry of Life, 29(2009)120−123.

Google Scholar

[53] W. Zou, C. Liu, Z.J. Chen and N. Zhang. Studies on bioadhesive PLGA nanoparticles: a promising gene delivery system for efficient gene therapy to lung cancer, Int J Pharm, 370 (2009)187−195.

DOI: 10.1016/j.ijpharm.2008.11.016

Google Scholar

[54] T. Kanazawa, Y. Takashima, M. Murakoshi, Y. Nakai and H. Okada. Enhancement of gene transfection into human dendritic cells using cationic PLGA nanospheres with a synthesized nuclear localization signal, Int J Pharm, 379(2009)187−195.

DOI: 10.1016/j.ijpharm.2009.06.015

Google Scholar

[55] D. Martarelli, P. Pompei and G. Mazzoni. Inhibition of adrenocortical carcinoma by diphtheria toxin mutant CRM 197, Chemotherapy, 55(2009)425-432.

DOI: 10.1159/000264689

Google Scholar

[56] B.H. Kim, J.H. Yoon, S.J. Myung, J.H. Lee S.H. Lee, S.M. Lee and H.S. Lee. Enhanced interleukin-2 diphtheria toxin conjugate- induced growth suppression in retinoic acid-treated hypoxic hepatocellular carcinoma cells, Cancer Lett, 274(2009).

DOI: 10.1016/j.canlet.2008.09.025

Google Scholar

[57] Y. Li, J. McCadden, F. Ferrer, M. Kruszewski, M. Carducci, J. Simons and R. Rodriguez. Prostate-specific expression of the diphtheria toxin A chain (DT-A): studies of inducibility and specificity of expression of prostate-specific antigen promoter-driven DT-A adenoviral-mediated gene transfer, Cancer Release, 62 (2002).

DOI: 10.1038/sj.cgt.7700385

Google Scholar