[1]
G. Wang, L. Pan and Y.G. Zhang. Research Progress on PLGA Nanoparticles/Microspheres as DNA Carriers, Microbiology, 36(2009) 1901-(1908).
Google Scholar
[2]
J. Schaieders, U. Gbureck, R. Thull and T. Kissel. Controlled release of geatamicin from calcium phosphate-poly (lactic acid-co-glycolic acid) composite bone cement, Biomaterials, 27(2006) 4239-4249.
DOI: 10.1016/j.biomaterials.2006.03.032
Google Scholar
[3]
R.A. Jain. The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices, Biomaterials, 21(2000) 2475-2490.
DOI: 10.1016/s0142-9612(00)00115-0
Google Scholar
[4]
S. Freiberg and X. Zhu. Polymer microspheres for controlled drug release. Int. J. Pharm, 282(2004)1-18.
Google Scholar
[5]
A. Porjazoska, K. Goracinova, M. Glavas, M. Glavas, M. Simonovska, E.I. Janjević and M. Cvetkovska. Poly (lactic-co-glycolide) micropartiles as systems for controlled release of proteins-preparation and characterization, Acta Pharm, 54(2004).
Google Scholar
[6]
S.R. Mao, J. Xu, C. Cai, O. Germerters, A. Schaper and T. Kissel. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres, Int J Pharmaceut, 334(2007)137-148.
DOI: 10.1016/j.ijpharm.2006.10.036
Google Scholar
[7]
W. Jiang, R.K. Gupta, M.C. Deshpande and S.P. Schwendeman. Biodegradable poly (lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens, Adv Drug Deliv Rev, 57(2005)391-410.
DOI: 10.1016/j.addr.2004.09.003
Google Scholar
[8]
U. Bilati, E. Allemann and E. Doelker. Strategic approaches for overcoming peptide and protein instability with biodegrable nano and microparticles, Eur J Pharm Biopharm, 59(2005) 375-388.
DOI: 10.1016/j.ejpb.2004.10.006
Google Scholar
[9]
N.A. Rahman and E. Mathiowitz. Localization of bovine serum albumin in double – walled microspheres, J Control Release, 94(2004)163-175.
DOI: 10.1016/j.jconrel.2003.10.010
Google Scholar
[10]
Y. Yeo and K. Park. Control of Encapsulation efficacy and initral burst in polymeric microspartide system, Arch Pharm Res, 27(2004)1-12.
Google Scholar
[11]
A. Aubert- Pouëssel, M.C. Venier – Julienne, P. Saulnier, M. Sergent and J.P. Benoît. Preparation of PLGA microparticles by an emulsion – extraction process using glycofurol as polymer solvent, Pharm Res, 21(2004)2384-2391.
DOI: 10.1007/s11095-004-7693-3
Google Scholar
[12]
M.J. Whitaker, J. Hao, O.R. Daives, G. Serhatkulu, S. Stolnik-Trenkic, S.M. Howdle and K.M. Shakesheff. The production of protein-loaded microparticles by supercritical fluid enhanced mixing and spraying, J Control Release, 101(2005)85-92.
DOI: 10.1016/j.jconrel.2004.07.017
Google Scholar
[13]
E.S. Lee, K.H. Park, D. Kang, H.Y. Min, D.H. Lee, S. Kim, J.H. Kim and K. Na. Protein complexed with chondroitin sulfate in poly(lactide-co-glycolide) microspheres, Biomaterials, 28(2007)2754-2762.
DOI: 10.1016/j.biomaterials.2007.01.049
Google Scholar
[14]
Y. Hong, C. Gao, Y. Xie, Y. Gong and J. Shen. Collagen-coated polylactide microspheres as chondrocyte microcarriers, Biomaterial, 26(2005)6305-6313.
DOI: 10.1016/j.biomaterials.2005.03.038
Google Scholar
[15]
F. Gabler, S. Frauenschun, J. Ringe, C. Brochhausen, P. Götz, C.J. Kirkpatrick, M. Sittinger, H. Schubert and R. Zehbe. Emulsion-based synthesis of PLGA microspheres for the in vitro expansion of porcine chondrocytes, Biomol Eng, 24(2007).
DOI: 10.1016/j.bioeng.2007.08.013
Google Scholar
[16]
S. Freitas, H.P. Merkle and B. Gander. Microencapsulation by solvent extraction /evaporation: reviewing the state of the art of microsphere preparation process technology, J Controlled Release, 102(2005) 313 -332.
DOI: 10.1016/j.jconrel.2004.10.015
Google Scholar
[17]
F.J. Hua, T.G. Park and D.S. Lee. A facile preparation of highly interconnected macroporous poly (D, L-lactic acid-co-glycolic acid) (PLGA) scaffolds by liquid-liquid phase separation of a PLGA-dioxane-water ternary system. Polymer, 44 (2003).
DOI: 10.1016/s0032-3861(03)00025-9
Google Scholar
[18]
P.D. Graham, K.J. Brodbeck and A.J. McHugh. Phase inversion dynamics of PLGA solutions related to drug delivery. J Control Release, 58 (1999)233-245.
DOI: 10.1016/s0168-3659(98)00158-8
Google Scholar
[19]
M.L. Hans and.M. Lowman. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci, 6 (2002)319-327.
DOI: 10.1016/s1359-0286(02)00117-1
Google Scholar
[20]
A. Maczurek, K. Hager, M. Kenklies, M. Sharman, R. Martins, J. Engel, D.A. Carlson and G. Münch. Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer's disease, Adv Drug Deliv Rev, 60(2008)1463−1470.
DOI: 10.1016/j.addr.2008.04.015
Google Scholar
[21]
R.C. Mundargi, V.R. Babu, V. Rangaswamy, P. Patel and T.M. Aminabhavi. Nano/micro technologies for delivering macromolecular therapeutics using poly (D, L-lactide-co-glycolide) and its derivatives, J Control Release, 125(2008) 193−209.
DOI: 10.1016/j.jconrel.2007.09.013
Google Scholar
[22]
H. Mok, J.W. Park and T.G. Park. Microencapsulation of PEGylated adenovirus within PLGA microspheres for enhanced stability and gene transfection efficiency, Pharm Res, 24(2007)2263−2269.
DOI: 10.1007/s11095-007-9441-y
Google Scholar
[23]
N. Csaba, A. Sánchez and M.J. Alonso. PLGA: poloxamer and PLGA: poloxamine blend nanos- tructures as carriers for nasal gene delivery, J Control Release, 113(2006)164−172.
DOI: 10.1016/j.jconrel.2006.03.017
Google Scholar
[24]
X. Sun, Y.R. Duan, Q. He, J. Lu and Z.R. Zhang. PELGE nanoparticles as new carriers for the delivery of plasmid DNA, Chem Pharm Bull, 53(2005)599−603.
DOI: 10.1248/cpb.53.599
Google Scholar
[25]
T. Kissel, Y.X. Lee and C. Volland. Parenteral protein delivery systems using biodegradable polyesters of ABA block structure, containing hydrophobic poly(lactide-co-glycolide) A blocks and hydrophilic poly(ethylene oxide) B blocks , J Control Release, 39 (1996).
DOI: 10.1016/0168-3659(95)00163-8
Google Scholar
[26]
S. Moffatt and R.J. Cristiano. PEGylated J591 mAb loaded in PLGA-PEG-PLGA tri-block copolymer for targeted delivery: in vitro evaluation in human prostate cancer cells, Int J Pharm, 317 (2006)10−13.
DOI: 10.1016/j.ijpharm.2006.04.011
Google Scholar
[27]
S. Moffatt, D. Choi, W.J. Kim, J.W. Yockman, L.V. Christensen, Y.H. Kim and S.W. Kim. Non-ionic amphiphilic biodegradable PEG-PLGA-PEG copolymer enhances gene delivery efficiency in rat skeletal muscle, J Control Release, 118(2007)245−253.
DOI: 10.1016/j.jconrel.2006.11.025
Google Scholar
[28]
J.D. Lathia, L. Leodore and M.A. Wheatley. Polymeric contrast agent with targeting potential, Ultrasonics, 42 (2004) 763-768.
DOI: 10.1016/j.ultras.2003.12.018
Google Scholar
[29]
M. Garinot, V. Fiévez, V. Pourcelle, F. Stoffelbach, A. des Rieux, L. Plapied, I. Theate, H. Freichels, C. Jérôme, J. Marchand-Brynaert, Y.J. Schneider and V. Préat. PEGylated PLGA- based nanoparticles targeting M cells for oral vaccination, J Control Release, 120(2007).
DOI: 10.1016/j.jconrel.2007.04.021
Google Scholar
[30]
S. Díez, G. Navarro and C.T. de ILarduya. In vivo targeted gene delivery by cationic nanoparticles for treatment of hepatocellular carcinoma, J Gene Med, 11(2009)38−45.
DOI: 10.1002/jgm.1273
Google Scholar
[31]
M. Singh, M. Ugozzoli, M. Briones, J. Kazzaz, E. Soenawan and D.T. Hagan. The effect of CTAB concentration in cationic PLG microparticles on DNA adsorption and in vivo performance, Pharm Res, 20(2003)247−251.
DOI: 10.1023/a:1022327305369
Google Scholar
[32]
F.F. Zhuang, R. Liang, C.T. Zou, H. Ma, C.X. Zheng and M.X. Duan. High efficient encapsulation of plasmid DNA in PLGA microparticles by organic phase self-emulsification, J Biochem Biophys Methods, 52(2002)169−178.
DOI: 10.1016/s0165-022x(02)00073-8
Google Scholar
[33]
K. Tahara, T. Sakai, H. Yamamoto, H. Takeuchi and Y. Kawashima. Establishing chitosan coated PLGA nanosphere platform loaded with wide variety of nucleic acid by complexation with cationic compound for gene delivery, Int J Pharm, 354(2008).
DOI: 10.1016/j.ijpharm.2007.11.002
Google Scholar
[34]
S. Jeremy, W. Blum and M. Saltzman. High loading efficiency and tunable release of plasmid DNA encapsulated in submicron particles fabricated from PLGA conjugated with poly-L-lysine , J Control Release, 129(2008)66−72.
DOI: 10.1016/j.jconrel.2008.04.002
Google Scholar
[35]
S. Fischer, C. Foerg, H.P. Merkle, H.P. Merkle and B. Gander. One-step preparation of polyelectrolyte -coated PLGA microparticles and their functionalization with model ligands, J Control Release, 111(2006) 135−144.
DOI: 10.1016/j.jconrel.2005.11.015
Google Scholar
[36]
S.P. Kasturi, K. Sachaphibulkij and K. Roy. Covalent conjugation of polyethyleneimine on biode- gradable microparticles for delivery of plasmid DNA vaccines, Biomaterials, 26(2005)6375−6385.
DOI: 10.1016/j.biomaterials.2005.03.043
Google Scholar
[37]
M. Andersen, A. Lichawska, A. Arpanaei, S.M. Rask Jensen, H. Kaur, D. Oupicky, F. Besenbacher, P. Kingshott, J. Kjems and KA. Howard. Surface functionalisation of PLGA nanoparticles for gene silencing, Biomaterials, 31(2010)5671−5677.
DOI: 10.1016/j.biomaterials.2010.03.069
Google Scholar
[38]
A.J. Gomes, L.O. Lunardi, J.M. Marchetti, C.N. Lunardi and A.C. Tedesco. Indocyanine green nanoparticles useful for photomedicine, Photomed Laser Surg, 24(2006)514-521.
DOI: 10.1089/pho.2006.24.514
Google Scholar
[39]
D. Moreno, S. Zalba, I. Navarro, C. de Ilarduya and M.J. Garrido. Pharmacodynamics cisplatin-loaded PLGA nanoparticles administered to tumor-bearing mice. Eur J Pharm Biopharm, 74 (2010) 265-274.
DOI: 10.1016/j.ejpb.2009.10.005
Google Scholar
[40]
L. Vicari, T. Musumeci, I. Giannone, L. Adamo, C. Conticello, R. de Maria, R. Pignatello, G. Puglisi and M. Gulisano. Paclitaxel loading in PLGA nanospheres affected the in vitro drug cell accumulation and antiproliferative activity. BMC Cancer, 8 (2008).
DOI: 10.1186/1471-2407-8-212
Google Scholar
[41]
P. Anand, H.B. Nair, B. Sung, A.B. Kunnumakkara, V.R. Yadav, R.R. Tekmal and B.B. Aggarwal. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol, 79(2010).
DOI: 10.1016/j.bcp.2015.11.008
Google Scholar
[42]
J. Shaikha, D.D. Ankolab, V. Beniwal, D. Singh and M.N. Kumar. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci, 37(2009).
DOI: 10.1016/j.ejps.2009.02.019
Google Scholar
[43]
M.M. Yallapu, D.M. Maher, V. Sundram, M. Jaggi and S.C. Chauhan. Curcumin induces chemo/radio- sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth , J Ovarian Res, 29(2010)11.
DOI: 10.1186/1757-2215-3-11
Google Scholar
[44]
R.L. Sastre, R. Olmo, C. Teijón, E. Muñíz, J.M. Teijón and M.D. Blanco. 5-Fluorouracil plasma levels and biodegradation of subcutaneously injected drug-loaded microspheres prepared by spray-drying poly (D, L-lactide) and poly (D, L-lactide-co-glycolide) polymers. Int J Pharm, 338 (2007).
DOI: 10.1016/j.ijpharm.2007.02.001
Google Scholar
[45]
J.Q. Li, R. Li, Y.X. Xu and S.L. Wang. Effect of Delayed-Release PLGA-5-Fluorouracil Microsphere on Colorectal Cancer Xenograft in Nude Mice. Acta Laboratorium Animalis Scientia Sinica, 17(2009) 81-84.
Google Scholar
[46]
M. Reni, W. Mason, F. Zaja, E. Muñíz, J.M. Teijón and M.D. Blanco. Salvage chemotherapy with temozolomide in primary CNS lymphomas: preliminary results of a phase II trial. Eur J Cancer, 40(2004) 1682-1688.
DOI: 10.1016/j.ejca.2004.03.008
Google Scholar
[47]
H. Zhang and S. Gao. Temozolomide/PLGA micropartieles and antitumor activity against glioma C6 cancer cells in vitro. Int J Pharm, 329(2007) 122-128.
DOI: 10.1016/j.ijpharm.2006.08.027
Google Scholar
[48]
L. Bie, H.Y. Yuan, X. Wang, G. Zhao and X.J. Liu. Preparation, Release-control and Cell Apoptosis of C6 Glioma Cells in PEG-PLGA-Rg3 Nanoparticles, Chem Res Chinese U, 26(2010)780-784.
Google Scholar
[49]
H.L. Jiang. Improvement of protein loading and modulation of protein release from poly (lactide-co-glycolide) microspheres by complexation of proteins with polyanions, J Microencapsul, 21(2004) 615-624.
DOI: 10.1080/02652040400000538
Google Scholar
[50]
P.S. Kumar, S. Ramakrishna, T.R. Saini and P.V. Diwan. Influence of microencapsulation method and peptide loading on formulation of poly (lactide-co-glycolide) insulin nanoparticles, Pharmazie, 61(2006) 613-617.
Google Scholar
[51]
D.J. Gary, N. Puri and Y.Y. Won. Polymer-based siRNA delivery: perspectives on the funda- mental and phenomenological distinctions from polymer-based DNA delivery, J Control Release, 121(2007)64−73.
DOI: 10.1016/j.jconrel.2007.05.021
Google Scholar
[52]
W. W Zou and N. Zhang. Research progress of PLGA nanoparticle as non-viral gene delivery system, Chemistry of Life, 29(2009)120−123.
Google Scholar
[53]
W. Zou, C. Liu, Z.J. Chen and N. Zhang. Studies on bioadhesive PLGA nanoparticles: a promising gene delivery system for efficient gene therapy to lung cancer, Int J Pharm, 370 (2009)187−195.
DOI: 10.1016/j.ijpharm.2008.11.016
Google Scholar
[54]
T. Kanazawa, Y. Takashima, M. Murakoshi, Y. Nakai and H. Okada. Enhancement of gene transfection into human dendritic cells using cationic PLGA nanospheres with a synthesized nuclear localization signal, Int J Pharm, 379(2009)187−195.
DOI: 10.1016/j.ijpharm.2009.06.015
Google Scholar
[55]
D. Martarelli, P. Pompei and G. Mazzoni. Inhibition of adrenocortical carcinoma by diphtheria toxin mutant CRM 197, Chemotherapy, 55(2009)425-432.
DOI: 10.1159/000264689
Google Scholar
[56]
B.H. Kim, J.H. Yoon, S.J. Myung, J.H. Lee S.H. Lee, S.M. Lee and H.S. Lee. Enhanced interleukin-2 diphtheria toxin conjugate- induced growth suppression in retinoic acid-treated hypoxic hepatocellular carcinoma cells, Cancer Lett, 274(2009).
DOI: 10.1016/j.canlet.2008.09.025
Google Scholar
[57]
Y. Li, J. McCadden, F. Ferrer, M. Kruszewski, M. Carducci, J. Simons and R. Rodriguez. Prostate-specific expression of the diphtheria toxin A chain (DT-A): studies of inducibility and specificity of expression of prostate-specific antigen promoter-driven DT-A adenoviral-mediated gene transfer, Cancer Release, 62 (2002).
DOI: 10.1038/sj.cgt.7700385
Google Scholar