Manufacturing and Characterization of Nanostructures Using Scanning Tunneling Microscopy with Diamond Tip

Abstract:

Article Preview

Nanoscale experiments with diamond tip that include processing, visualization and tunneling spectroscopy of the surface are presented. Single crystal diamond synthesized by the temperature gradient method under high pressure–high temperature (HPHT) conditions is proposed as a multifunctional tip for scanning tunneling microscopy (STM). Sequence of the procedures covering growing crystals with predetermined physical properties, selection of the synthesized crystals with the desired habit and their precise shaping have been developed. The original STM’s peculiarity is the electromagnetic probe-to-surface load measuring system. The results of fabrication and characterization of nanostructures for nanoelectronics, data storages and biology are demonstrated and discussed.

Info:

Periodical:

Pages:

14-46

Citation:

O. G. Lysenko et al., "Manufacturing and Characterization of Nanostructures Using Scanning Tunneling Microscopy with Diamond Tip", Journal of Nano Research, Vol. 42, pp. 14-46, 2016

Online since:

July 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] D.M. Eigler, E.K. Schweizer, Positioning single atoms with a Scanning Tunneling Microscope, Nature 344 (1990) 524–528.

DOI: https://doi.org/10.1038/344524a0

[2] L. A. Nagahara, T. Thundat , S.M. Lindsay , Nanolithography on semiconductor surfaces under an etching solution, Appl. Phys. Lett. 57(1990) 270–272.

DOI: https://doi.org/10.1063/1.103711

[3] A. Majumdar, P.L. Oden, J.P. Carrejo et al., Nanometer-scale lithography using the Atomic Force Microscope, Appl. Phys. Lett. 61(1992) 2293–2295.

DOI: https://doi.org/10.1063/1.108268

[4] P. Davidsson, A. Lindell, T. Makela T. et al., Nanolithography by electron exposure using an Atomic Force Microscope, Microelectron. Eng. 45(1999) 1–8.

[5] M. Ishibashi, S. Heike, H. Kajiyama et al., Characteristics of scanning-probe lithography with a current-controlled exposure system, Appl. Phys. Lett. 72(1998) 1581–1583.

DOI: https://doi.org/10.1063/1.121121

[6] J. W Park, D.W. Lee, N. Kawasegi, N. Norita, Nanoscale fabrication in aqueous solution using tribo-nanolithography, Int. J. of Prec. Eng. and Manuf. 7 (2006) 8-13.

[7] N. Kawasegi, N. Morita, S. Yamada et al., Etch stop of surface induced by tribo-nanolithography, Nanotechnology, 16(2005) 1411–1414.

DOI: https://doi.org/10.1088/0957-4484/16/8/073

[8] J.W. Park, N. Kawasegi, N. Norita, D.W. Lee, Tribo-nanolitography of silicon in aqueous solution based on Atomic Force Microscope, Appl. Phy. Lett. 85(2004) 1166-1768.

[9] M.A. McCord, R.F. Pease, Scanning Tunneling Microscope as a micromechanical tool, Appl. Phys. Lett. 50(1987) 569–570.

DOI: https://doi.org/10.1063/1.98137

[10] E.J. Van Loenen, D. Dijkkamp, A.J. Hoeven et al., Nanometer scale structuring of silicon by direct indentation, J. Vac. Sci. Technol. A 8 (1989) 574–576.

[11] M. Versen, B. Klehn, U. Kunze et al., Nanoscale devices fabricated by direct machining of GaAs with an Atomic Force Microscope, Ultramicroscope 82(2000) 159–163.

DOI: https://doi.org/10.1016/s0304-3991(99)00127-8

[12] S. Miyake, 1 nm deep mechanical processing of muccovite mica by atomic force microscopy, Appl. Phys. Lett. 67(1995) 2925–2927.

DOI: https://doi.org/10.1063/1.114844

[13] T.H. Fang., W.J. Chang, Effects of АРМ-based nanomachining process on aluminum surface, J. Phys. Chem. Solids 64(2003) 913–918.

[14] E. Oesterschulze, A. Malave, U.F. Keyser et al., Diamond cantilevers with integrated tip for nanomachining, Diam. Rel. Mater. 11(2002) 667–671.

DOI: https://doi.org/10.1016/s0925-9635(01)00542-8

[15] K. Ashida, N. Morita, Y. Yushida, Study on nanomachining process using mechanism of a Friction Force Microscope, JSME Int. J., Ser.C. 44(2001) 244–253.

[16] N. Kawasegi, N. Takano, D. Oka et al., Nanomachining of silicon surface using Atomic Force Microscope with diamond tip, J. Manuf. Sci. Eng. 128(2006) 723–729.

DOI: https://doi.org/10.1115/1.2163364

[17] O. Lysenko, N. Novikov, A. Gontar et al., Combined scanning nanoindentation and tunneling microscope technique by means of semiconductive diamond Berkovich tip, J. Phys.: Conf. Ser. 61 (2007) 740-744.

DOI: https://doi.org/10.1088/1742-6596/61/1/148

[18] O. Lysenko, N. Novikov, V. Grushko et al., Fabrication and characterization of single crystal semiconductive diamond tip for combined scanning tunneling microscopy, Diamond Relat. Mater. 17(2008) 1316–1319.

DOI: https://doi.org/10.1016/j.diamond.2008.02.013

[19] V. Grushko, O. Lübben, A. N. Chaika, N. Novikov, E. Mitskevich, A. Chepugov,O. Lysenko, B. Murphy, S. Krasnikov, V. Shvets, Atomically resolved STM imaging with a diamond tip: simulation and experiment, Nanotechnology 25(2014).

DOI: https://doi.org/10.1088/0957-4484/25/2/025706

[20] W. Egon, W. Nils, H.A. Frederick, Inorganic Chemistry, Academic Press, ISBN 9780123526519, (2001).

[21] W.A. Hofer, J. Redinger. P. Varga, Modeling STM tips by single absorbed atoms on W(100) films: 5d transition metal atoms, Solid State Communications 113(2000) 245-250.

DOI: https://doi.org/10.1016/s0038-1098(99)00489-5

[22] W.A. Hofer, A.S. Foster, A.L. Shluger, Theories of scanning probe microscopes at the atomic scale, Rev. Mod. Phys. 75(2003) 1287-1331.

DOI: https://doi.org/10.1103/revmodphys.75.1287

[23] J.G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film, J. Appl. Phys. 34(1963) 1793-1803.

DOI: https://doi.org/10.1063/1.1702682

[24] A. Richter, R.S.A. Smith, Scanning probe microscopy and computer simulations: Complementary techniques for nanostructured materials and thin films, Cryst. Res. Technol. 38(2003) 250-266.

DOI: https://doi.org/10.1002/crat.200310029

[25] B.A. Lippmann, J. Schwinger, Variational principles for scattering processes, Phys. Rev. 79(1950) 469-480.

DOI: https://doi.org/10.1103/physrev.79.469

[26] W. Sacks, C. Noguera, Generalized expression for the tunneling current in scanning tunneling microscopy, Phys. Rev. B 43(1991) 11612.

DOI: https://doi.org/10.1103/physrevb.43.11612

[27] J.P. Hurault, Effet tunnel assistk par des niveaux liks, J. de Phys. 32(1971) 421-426.

DOI: https://doi.org/10.1051/jphys:01971003205-6042100

[28] J.K. Gimzewski, R. Möller, Transition from the tunneling regime to point .. using scanning tunneling microscopy, Phys. Rev. B 36(1987) 1284-1287.

DOI: https://doi.org/10.1103/physrevb.36.1284

[29] N. Novikov, T. Nachalna, S. Ivakhnenko et al., Properties of semiconducting diamonds grown by the temperature-gradient method, Diam. Rel. Mater. 12(2003) 1990-(1994).

[30] O. Lysenko, V. Grushko, E. Mitskevich, A.G. Mamalis, Scanning probe microscopy with diamond tip in tribo-nanolithography, Proc. Mater. Res. Soc. Symp. 1318(2011) 179–183.

DOI: https://doi.org/10.1557/opl.2011.282

[31] M. Manimaran, G.L. Snider, C.S. Lent, V. Sarveswaran, ZH. Li, T.P. Fehlner, Scanning tunneling microscopy and spectroscopy investigations of QCA molecules, Ultramicroscopy 97(2003) 55–63.

DOI: https://doi.org/10.1016/s0304-3991(03)00085-8

[32] T. Nishizaki et al., Scanning tunneling microscopy and spectroscopy studies of superconducting boron-doped diamond films, Science and Technology of Advanced Materials 7(2006) 22–26.

[33] E.L. Wolf, Principles of Electron Tunneling Spectroscopy, Clarendon, Oxford, (1985).

[34] H Ou-Yang, B. Källebring, R.A. Marcus, A theoretical model of scanning tunneling microscopy: Application to the graphite (0001) and Au(111) surfaces, J. Chem. Phys. 98(1993) 7565–7573.

DOI: https://doi.org/10.1063/1.464696

[35] T.P. Leung, W.B. Lee, X.M. Lu, Diamond turning of silicon substrates in ductile-regime, J. Mater. Proc. Tech. 73(1998) 42–48.

[36] S, Hasegawa, In: Morita, S. (ed. ) Roadmap of Scanning Probe Microscopy, Springer, (2007).

[37] B. Lunt, M. Linford, US Patent 2, 009, 023, 1978 (2009), Long-term digital data storage.

[38] I.V. Gridneva, Yu.V. Mil'man, V.I. Trefilov, Phase transition in diamond-structured crystals during hardness measurements, Phys. Status Solidi (a) 14(1972) 177–182.

DOI: https://doi.org/10.1002/pssa.2210140121

[39] G.M. Pharr, W.C. Oliver, D.R. Clarke, The mechanical behavior of silicon during small-scale indentation, J. Elec. Mater. 19(1990) 881–887.

DOI: https://doi.org/10.1007/bf02652912

[40] G.M. Pharr, The anomalous behavior of silicon during nanoindentation, Mater. Res. Soc. Symp. Proc. 239(1992) 301–312.

[41] E.R. Weppelmann, J.S. Field, M.V. Swain, Influence of spherical indenter radius on the indentation-induced transformation behavior of silicon, J. Mater. Sci. 30(1995) 2455–2462.

DOI: https://doi.org/10.1007/bf01184600

[42] S. Ruffell, J.E. Bradby, J.S. Williams, O.L. Warren, An in situ electrical measurement technique via a conducting diamond tip for nanoindentation in silicon, J. Mater. Res. 22(2007) 578–586.

DOI: https://doi.org/10.1557/jmr.2007.0100

[43] H. Saka, A. Shimatani, M. Suganuma, J. Supri, Transmission electron microscopy of amorphization and phase transformation beneath indent in Si, Phil. Mag. A 82(2002) 1971–(1981).

DOI: https://doi.org/10.1080/01418610210134404

[44] J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain, P. Munroe, Mechanical deformation in silicon by micro-Indentation, J. Mater. Res. 16(2001) 1550–1507.

DOI: https://doi.org/10.1557/jmr.2001.0209

[45] Y.G. Gogotsi, V. Domnich, S.N. Dub, A. Kailer, K.G. Nickel, Cyclic Nanoindentation and Raman micro-spectroscopy study of phase transformations in semiconductors, J. Mater. Res. 15(2000) 871–879.

DOI: https://doi.org/10.1557/jmr.2000.0124

[46] V. Domnich, Y. Gogotsi, S.N. Dub, Effect of phase transformations on the shape of unloading curve in the nanoindentation of silicon, Appl. Phys. Lett. 76 (2000) 2214–2216.

DOI: https://doi.org/10.1063/1.126300

[47] O. Lysenko, A.G. Mamalis, V. Andruschenko, E. Mitskevich, Surface nanomachining using Scanning Tunneling Microsope with a diamond tip, Nanotechnology Perceptions 6(2010) 41–50.

DOI: https://doi.org/10.4024/n19ly09a.ntp.06.01

[48] D. Tabor, The Hardness of Metals, Oxford, Clarendon Press, (2000).

[49] T.A. Michalske, J.E. Houston, Dislocation nucleation at nanoscale mechanical contacts, Acta Mater. 46(1998) 391–396.

DOI: https://doi.org/10.1016/s1359-6454(97)00270-x

[50] C. Tromas, Y. Gaillard, J. Woirgard, Nucleation of dislocations during nanoindentation in MgO, Phil. Mag. 86(2006) 5595–5606.

DOI: https://doi.org/10.1080/14786430600690499

[51] T. Ohmura, L. Zhang, K. Sekido, K. Tsuzaki, Effects of lattice defects on indentation-induced plasticity initiation behavior in metals, J. Mater. Res. 27(2012) 1742–1749.

DOI: https://doi.org/10.1557/jmr.2012.161

[52] S. N. Dub, V.V. Brazhkin, N.V. Novikov, G.N. Tolmacheva, P.M. Litvin, L.M. Lityagina, T.I. Dyuzheva, Comparative studies of mechanical properties of stishovite and sapphire single crystals by nanoindentation, J. Superhard Mater. 32(2010) 406–414.

DOI: https://doi.org/10.3103/s1063457610060067

[53] S.N. Dub, G.P. Kislaya, P.I. Loboda, Study of mechanical properties of LaB6 single crystal by nanoindentation, J. Superhard Mater. 35(2013) 158–165.

DOI: https://doi.org/10.3103/s1063457613030052

[54] S.N. Dub, P.I. Loboda, Yu.I. Bogomol, G.N. Tolmacheva, V.N. Tkach, Mechanical properties of HfB2 whiskers, J. Superhard Mater. 35(2013) 234–241.

DOI: https://doi.org/10.3103/s1063457613040059

[55] K.L. Johnson, Contact Mechanics, Cambridge, UK, Cambridge University Press, (1987).

[56] H.M. Pollock, Nanoindentation, In: Friction, Lubrication and Wear Technology, ASM Handbook 18, ASM International. Materials Park: OH, (1992) 419–429.

[57] J. Mencik, M.V. Swain, Characterisation of materials using micro-indentation tests with pointed indenters, Mater. Forum 18(1994) 277–288.

[58] G.M. Pharr, Measurement of mechanical properties by ultra-low load indentation, Mater. Sci. Eng. A253(1998) 151–159.

[59] B. Wolf, Inference of mechanical properties from instrumented depth sensing indentation at tiny loads and indentation depths, Cryst. Res. Technol. 35(2000) 377–399.

DOI: https://doi.org/10.1002/1521-4079(200004)35:4<377::aid-crat377>3.0.co;2-q

[60] J.L. Hay, G.M. Pharr, Instrumented Indentation Testing, In: H. Kuhn, D. Medlin (Eds. ) ASM Handbook: Mechanical Testing and Evaluation, 10th ed. ASM International: Materials Park, 8(2000) 232–243.

[61] B. Bhushan, X. Li, Nanomechanical characterization of solid surfaces and thin films, Int. Mater. Rev. 48(2003) 125–164.

[62] M.R. Van Landingham, Review of instrumented indentation, J. Res. Natl. Inst. Stand. Technol. 108(2003) 249–265.

[63] J. Mackerle, Finite element and boundary element simulations of indentation problems: A bibliography (1997–2000), Finite Elem. Anal. Design. 37(2001) 811–819.

DOI: https://doi.org/10.1016/s0168-874x(01)00044-0

[64] J. Mackerle, Engineering computations, Int. J. Comput. Aid. Eng. 21(2004) 23.

[65] I.J. McColm, Ceramic Hardness, Plenum Press, New York, (1990).

[66] A.C. Fischer-Cripps, Nanoindentation, Springer Verlag, New York, (2002).

[67] M.M. Chaudhri, Y.Y. Lim (Eds. ) Second International Indentation Workshop, Cavendish Laboratory, University of Cambridge, Cambridge, UK, July 2001, Phil. Mag. 82(2002) 1807–1809.

DOI: https://doi.org/10.1080/01418610208235691

[68] Focus topic: Nanoindentation. J. Mater. Res. 14(1999).

[69] Y.T. Cheng, T. Page, G.M. Pharr, M. Swain, K.J. Wahl (Eds. ), Fundamentals and Applications of Instrumented Indentation in Multidisciplinary Research, J. Mater. Res. 19 (2004) 1–2.

[70] J.H. Westbrook., H. Conrad (Eds. ) The Science of Hardness Testing and Its Research Applications. American Society for Metals, Metals Park, (1973).

[71] S.P. Baker, R.F. Cook, S.G. Corcoran, N.R. Moody (Eds. ), Fundamentals of Nanoindentation and Nanotribology II, Mater. Res. Soc. Symp. Proc. 2001, 649.

[72] A. Kumar, W.J. Meng, Y.T. Cheng, J.S. Zabinski, G.L. Doll, S. Veprek (Eds. ), Surface Engineering 2002: Synthesis, Characterization and Applications, Mater. Res. Soc. Symp. Proc. 2003; 750.

[73] H. Butt, B. Capella, M. Kappl, Surf. Sci. Rep. 59(2005) 1.

[74] S. Hengsberge, A. Kulik, European Cells and Materials 1(2001) 12.

[75] D.C. Lin, E.K. Dimitriadis, F. Horkay, Robust strategies for automated AFM force curve analysis—II: Adhesion-influenced indentation of soft, elastic materials, ASME J. Biomech. Eng. 129(2007) 430–440.

DOI: https://doi.org/10.1115/1.2800826

[76] D.B. Bogy, Surface modification and measurement using a Scanning Tunneling Microscope with a diamond tip, Journal of Tribology 114(1992) 493–498.

DOI: https://doi.org/10.1115/1.2920910

[77] G.M. Matenoglou, L.E. Koutsokeras, Ch.E. Lekka, G. Abadias, C. Kosmidis, G.A. Evangelakis, P. Patsalas, Surf. Coat. Technol. 204(2009) 911–914.

DOI: https://doi.org/10.1016/j.surfcoat.2009.06.032

[78] J. Hay, P. Agee, E. Herbert, Continuous stiffness measurement during instrumented indentation testing, Exp. Techniques 34(2010) 86–94.

DOI: https://doi.org/10.1111/j.1747-1567.2010.00618.x

[79] T. F. Page, W. C. Oliver, C. J. McHargue, The deformation behavior of ceramic crystals subjected to very low load (nano) indentations, J. Mater. Res. 7(1992) 450–473.

DOI: https://doi.org/10.1557/jmr.1992.0450

[80] C. Tromas, J. Colin, C. Coupeau, et al., Pop-in phenomenon during nanoindentation in MgO, Eur. Phys. J. Appl. Phys. 8(1999) 123–128.

[81] D. Lorenz, A. Zeckzer, U. Hilpert, et al. Pop-in effect as homogeneous nucleation of dislocations during nanoindentation, Phys. Rev. B67(2003) 172101–172104.

DOI: https://doi.org/10.1103/physrevb.67.172101

[82] E.T. Lilleoden, W.D. Nix, Microstructural length-scale effects in the nanoindentation behavior of thin gold films, Acta Mater. 54(2006) 1583-1593.

DOI: https://doi.org/10.1016/j.actamat.2005.11.025

[83] C. Lu, Y.W. Mai, P. L. Tam, Y. G. Shen, Nanoindentation-induced elastic–plastic transition and size effect in a-Al2O3 (0001), Phil. Mag. Lett. 87(2007) 409–415.

DOI: https://doi.org/10.1080/09500830701203156

[84] S.N. Dub, Y.Y. Lim, M.M. Chaudhri, Nanohardness of high purity Cu (111) single crystals: the effect of indenter load and prior plastic sample strain, J. Appl. Phys. 107(2010) 043510–043510(15).

DOI: https://doi.org/10.1063/1.3290970

[85] D. Tabor Hardness of Metals. Oxford University Press, Oxford, (1951).

[86] I. Spary, N.M. Jennett, A.J. Bushby, Indentation and Finite Element modelling investigations of the indentation size effect in aluminium coatings on borosilicate glass substrates, MRS Symp Proc. 795(2004) 455-461.

DOI: https://doi.org/10.1557/proc-795-u10.6

[87] Y. Utsugi, Nanometre-scale chemical modification using a Scanning Tunnelling Microscope, Nature 347(1990) 747-749.

DOI: https://doi.org/10.1038/347747a0

[88] A. Sato and Y. Tsukamoto, Nanometre-scale recording and erasing with the Scanning Tunnelling Microscope, Nature 363(1993) 431-432.

DOI: https://doi.org/10.1038/363431a0

[89] R. Becker, A. Golovchenko, Swartzentruber, Atomic-scale surface modifications using a Tunneling Microscope, Nature 325(1987) 419-421.

DOI: https://doi.org/10.1038/325419a0

[90] T. Jung, A. Moser, H. Hug, D. Brodbeck, R. Hofer, H. Hidber, and U. Schwarz, High-density data storage using proximal probe techniques, Ultramicrosc. 42(1992) 1446-1451.

DOI: https://doi.org/10.1016/0304-3991(92)90464-u

[91] S. Hosaka, A. Kikukawa, H. Koyanagi et al., SPM-based data storage for ultrahigth density recording, Nanotechnology 8(1997) A58–A62.

DOI: https://doi.org/10.1088/0957-4484/8/3a/012

[92] H. Kado, T. Tohda, Nanometer-scale recording on chalcogenide films with an Atomic Force Microscope, Appl. Phys. Lett. 66(1995) 2961-2962.

DOI: https://doi.org/10.1063/1.114243

[93] J. Ruigrok, R. Coehoorn, S. Cumpson, H. Kesteren, Disk recording beyond 100 Gb/in2: hybrid recording?, J. Appl. Phys. 87(2000) 5398–5403.

DOI: https://doi.org/10.1063/1.373356

[94] J. Nakamura, M, Miamoto, S. Hosaka, H. Koyanagi, High-density thermomagnetic recording method using a Scanning Tunneling Microscope, J. Appl. Phys. 77(1995) 779–781.

DOI: https://doi.org/10.1063/1.359000

[95] L. Zhang, J. Bain, J. Zhu, L. Abelmann, T. Onoue, Characterization of heat-assisted magnetic probe recording on CoNi/Pt multilayers, J. Mag. Magn. Mater. 305(2006) 16–23.

DOI: https://doi.org/10.1016/j.jmmm.2005.11.022

[96] O. Lysenko, N. Novikov, V. Grushko et al., High-density data storage using diamond probe technique, Journal of Physics: Conference Series 100(2008) 052032.

DOI: https://doi.org/10.1088/1742-6596/100/5/052032

[97] I. Yaminsky, A. Tishin, Magnetic force microscopy of the surface, Uspekhi Khimii 68(1999) 187–193 (in Russian).

[98] N. Novikov (Ed), Physical Properties of Diamonds (Handbook), Naukova Dumka Publ, Kyiv, 1987 (in Russian).

[99] E. Drolle, F. Hane, B. Lee, Z. Leonenko, Atomic force microscopy to study molecular mechanisms of amyloid fibril formation and toxicity in Alzheimer's disease, Drug Metab. Rev. 46(2014) 207–223.

DOI: https://doi.org/10.3109/03602532.2014.882354

[100] C. Nebel, D. Shin, B. Rezek, N, Tokuda, H. Uetsuka, H. Watanabe, Diamond and biology J. R. Soc. Interface 4(2007) 439–461.

DOI: https://doi.org/10.1098/rsif.2006.0196

[101] L. Cagnon, T. Devolder, R. Cortes, A. Morrone, J. E. Schmidt, C. Chappert, P. Allongue, Physical Review B 63(2001) 104419.

DOI: https://doi.org/10.1103/physrevb.63.104419

[102] J. Halbritter, G. Repphun, S. Vinzelberg, G. Staikov, W.J. Lorenz, Electrochim. Acta. 40(1995) 1385–1394.

DOI: https://doi.org/10.1016/0013-4686(95)00038-g

[103] H. Siegenthaler, Scanning tunneling microscopy in electrochemistry, In: R. Wiesendanger and H. J. Guenterodt (Eds. ) (1992) 7–49.

Fetching data from Crossref.
This may take some time to load.