Manufacturing and Characterization of Nanostructures Using Scanning Tunneling Microscopy with Diamond Tip

Article Preview

Abstract:

Nanoscale experiments with diamond tip that include processing, visualization and tunneling spectroscopy of the surface are presented. Single crystal diamond synthesized by the temperature gradient method under high pressure–high temperature (HPHT) conditions is proposed as a multifunctional tip for scanning tunneling microscopy (STM). Sequence of the procedures covering growing crystals with predetermined physical properties, selection of the synthesized crystals with the desired habit and their precise shaping have been developed. The original STM’s peculiarity is the electromagnetic probe-to-surface load measuring system. The results of fabrication and characterization of nanostructures for nanoelectronics, data storages and biology are demonstrated and discussed.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] D.M. Eigler, E.K. Schweizer, Positioning single atoms with a Scanning Tunneling Microscope, Nature 344 (1990) 524–528.

DOI: 10.1038/344524a0

Google Scholar

[2] L. A. Nagahara, T. Thundat , S.M. Lindsay , Nanolithography on semiconductor surfaces under an etching solution, Appl. Phys. Lett. 57(1990) 270–272.

DOI: 10.1063/1.103711

Google Scholar

[3] A. Majumdar, P.L. Oden, J.P. Carrejo et al., Nanometer-scale lithography using the Atomic Force Microscope, Appl. Phys. Lett. 61(1992) 2293–2295.

DOI: 10.1063/1.108268

Google Scholar

[4] P. Davidsson, A. Lindell, T. Makela T. et al., Nanolithography by electron exposure using an Atomic Force Microscope, Microelectron. Eng. 45(1999) 1–8.

Google Scholar

[5] M. Ishibashi, S. Heike, H. Kajiyama et al., Characteristics of scanning-probe lithography with a current-controlled exposure system, Appl. Phys. Lett. 72(1998) 1581–1583.

DOI: 10.1063/1.121121

Google Scholar

[6] J. W Park, D.W. Lee, N. Kawasegi, N. Norita, Nanoscale fabrication in aqueous solution using tribo-nanolithography, Int. J. of Prec. Eng. and Manuf. 7 (2006) 8-13.

Google Scholar

[7] N. Kawasegi, N. Morita, S. Yamada et al., Etch stop of surface induced by tribo-nanolithography, Nanotechnology, 16(2005) 1411–1414.

DOI: 10.1088/0957-4484/16/8/073

Google Scholar

[8] J.W. Park, N. Kawasegi, N. Norita, D.W. Lee, Tribo-nanolitography of silicon in aqueous solution based on Atomic Force Microscope, Appl. Phy. Lett. 85(2004) 1166-1768.

DOI: 10.1063/1.1773620

Google Scholar

[9] M.A. McCord, R.F. Pease, Scanning Tunneling Microscope as a micromechanical tool, Appl. Phys. Lett. 50(1987) 569–570.

DOI: 10.1063/1.98137

Google Scholar

[10] E.J. Van Loenen, D. Dijkkamp, A.J. Hoeven et al., Nanometer scale structuring of silicon by direct indentation, J. Vac. Sci. Technol. A 8 (1989) 574–576.

DOI: 10.1116/1.576391

Google Scholar

[11] M. Versen, B. Klehn, U. Kunze et al., Nanoscale devices fabricated by direct machining of GaAs with an Atomic Force Microscope, Ultramicroscope 82(2000) 159–163.

DOI: 10.1016/s0304-3991(99)00127-8

Google Scholar

[12] S. Miyake, 1 nm deep mechanical processing of muccovite mica by atomic force microscopy, Appl. Phys. Lett. 67(1995) 2925–2927.

DOI: 10.1063/1.114844

Google Scholar

[13] T.H. Fang., W.J. Chang, Effects of АРМ-based nanomachining process on aluminum surface, J. Phys. Chem. Solids 64(2003) 913–918.

DOI: 10.1016/s0022-3697(02)00436-5

Google Scholar

[14] E. Oesterschulze, A. Malave, U.F. Keyser et al., Diamond cantilevers with integrated tip for nanomachining, Diam. Rel. Mater. 11(2002) 667–671.

DOI: 10.1016/s0925-9635(01)00542-8

Google Scholar

[15] K. Ashida, N. Morita, Y. Yushida, Study on nanomachining process using mechanism of a Friction Force Microscope, JSME Int. J., Ser.C. 44(2001) 244–253.

DOI: 10.1299/jsmec.44.244

Google Scholar

[16] N. Kawasegi, N. Takano, D. Oka et al., Nanomachining of silicon surface using Atomic Force Microscope with diamond tip, J. Manuf. Sci. Eng. 128(2006) 723–729.

DOI: 10.1115/1.2163364

Google Scholar

[17] O. Lysenko, N. Novikov, A. Gontar et al., Combined scanning nanoindentation and tunneling microscope technique by means of semiconductive diamond Berkovich tip, J. Phys.: Conf. Ser. 61 (2007) 740-744.

DOI: 10.1088/1742-6596/61/1/148

Google Scholar

[18] O. Lysenko, N. Novikov, V. Grushko et al., Fabrication and characterization of single crystal semiconductive diamond tip for combined scanning tunneling microscopy, Diamond Relat. Mater. 17(2008) 1316–1319.

DOI: 10.1016/j.diamond.2008.02.013

Google Scholar

[19] V. Grushko, O. Lübben, A. N. Chaika, N. Novikov, E. Mitskevich, A. Chepugov,O. Lysenko, B. Murphy, S. Krasnikov, V. Shvets, Atomically resolved STM imaging with a diamond tip: simulation and experiment, Nanotechnology 25(2014).

DOI: 10.1088/0957-4484/25/2/025706

Google Scholar

[20] W. Egon, W. Nils, H.A. Frederick, Inorganic Chemistry, Academic Press, ISBN 9780123526519, (2001).

Google Scholar

[21] W.A. Hofer, J. Redinger. P. Varga, Modeling STM tips by single absorbed atoms on W(100) films: 5d transition metal atoms, Solid State Communications 113(2000) 245-250.

DOI: 10.1016/s0038-1098(99)00489-5

Google Scholar

[22] W.A. Hofer, A.S. Foster, A.L. Shluger, Theories of scanning probe microscopes at the atomic scale, Rev. Mod. Phys. 75(2003) 1287-1331.

DOI: 10.1103/revmodphys.75.1287

Google Scholar

[23] J.G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film, J. Appl. Phys. 34(1963) 1793-1803.

DOI: 10.1063/1.1702682

Google Scholar

[24] A. Richter, R.S.A. Smith, Scanning probe microscopy and computer simulations: Complementary techniques for nanostructured materials and thin films, Cryst. Res. Technol. 38(2003) 250-266.

DOI: 10.1002/crat.200310029

Google Scholar

[25] B.A. Lippmann, J. Schwinger, Variational principles for scattering processes, Phys. Rev. 79(1950) 469-480.

DOI: 10.1103/physrev.79.469

Google Scholar

[26] W. Sacks, C. Noguera, Generalized expression for the tunneling current in scanning tunneling microscopy, Phys. Rev. B 43(1991) 11612.

DOI: 10.1103/physrevb.43.11612

Google Scholar

[27] J.P. Hurault, Effet tunnel assistk par des niveaux liks, J. de Phys. 32(1971) 421-426.

DOI: 10.1051/jphys:01971003205-6042100

Google Scholar

[28] J.K. Gimzewski, R. Möller, Transition from the tunneling regime to point .. using scanning tunneling microscopy, Phys. Rev. B 36(1987) 1284-1287.

DOI: 10.1103/physrevb.36.1284

Google Scholar

[29] N. Novikov, T. Nachalna, S. Ivakhnenko et al., Properties of semiconducting diamonds grown by the temperature-gradient method, Diam. Rel. Mater. 12(2003) 1990-(1994).

DOI: 10.1016/s0925-9635(03)00317-0

Google Scholar

[30] O. Lysenko, V. Grushko, E. Mitskevich, A.G. Mamalis, Scanning probe microscopy with diamond tip in tribo-nanolithography, Proc. Mater. Res. Soc. Symp. 1318(2011) 179–183.

DOI: 10.1557/opl.2011.282

Google Scholar

[31] M. Manimaran, G.L. Snider, C.S. Lent, V. Sarveswaran, ZH. Li, T.P. Fehlner, Scanning tunneling microscopy and spectroscopy investigations of QCA molecules, Ultramicroscopy 97(2003) 55–63.

DOI: 10.1016/s0304-3991(03)00085-8

Google Scholar

[32] T. Nishizaki et al., Scanning tunneling microscopy and spectroscopy studies of superconducting boron-doped diamond films, Science and Technology of Advanced Materials 7(2006) 22–26.

DOI: 10.1016/j.stam.2006.05.008

Google Scholar

[33] E.L. Wolf, Principles of Electron Tunneling Spectroscopy, Clarendon, Oxford, (1985).

Google Scholar

[34] H Ou-Yang, B. Källebring, R.A. Marcus, A theoretical model of scanning tunneling microscopy: Application to the graphite (0001) and Au(111) surfaces, J. Chem. Phys. 98(1993) 7565–7573.

DOI: 10.1063/1.464696

Google Scholar

[35] T.P. Leung, W.B. Lee, X.M. Lu, Diamond turning of silicon substrates in ductile-regime, J. Mater. Proc. Tech. 73(1998) 42–48.

DOI: 10.1016/s0924-0136(97)00210-0

Google Scholar

[36] S, Hasegawa, In: Morita, S. (ed. ) Roadmap of Scanning Probe Microscopy, Springer, (2007).

Google Scholar

[37] B. Lunt, M. Linford, US Patent 2, 009, 023, 1978 (2009), Long-term digital data storage.

Google Scholar

[38] I.V. Gridneva, Yu.V. Mil'man, V.I. Trefilov, Phase transition in diamond-structured crystals during hardness measurements, Phys. Status Solidi (a) 14(1972) 177–182.

DOI: 10.1002/pssa.2210140121

Google Scholar

[39] G.M. Pharr, W.C. Oliver, D.R. Clarke, The mechanical behavior of silicon during small-scale indentation, J. Elec. Mater. 19(1990) 881–887.

DOI: 10.1007/bf02652912

Google Scholar

[40] G.M. Pharr, The anomalous behavior of silicon during nanoindentation, Mater. Res. Soc. Symp. Proc. 239(1992) 301–312.

Google Scholar

[41] E.R. Weppelmann, J.S. Field, M.V. Swain, Influence of spherical indenter radius on the indentation-induced transformation behavior of silicon, J. Mater. Sci. 30(1995) 2455–2462.

DOI: 10.1007/bf01184600

Google Scholar

[42] S. Ruffell, J.E. Bradby, J.S. Williams, O.L. Warren, An in situ electrical measurement technique via a conducting diamond tip for nanoindentation in silicon, J. Mater. Res. 22(2007) 578–586.

DOI: 10.1557/jmr.2007.0100

Google Scholar

[43] H. Saka, A. Shimatani, M. Suganuma, J. Supri, Transmission electron microscopy of amorphization and phase transformation beneath indent in Si, Phil. Mag. A 82(2002) 1971–(1981).

DOI: 10.1080/01418610208235709

Google Scholar

[44] J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain, P. Munroe, Mechanical deformation in silicon by micro-Indentation, J. Mater. Res. 16(2001) 1550–1507.

DOI: 10.1557/jmr.2001.0209

Google Scholar

[45] Y.G. Gogotsi, V. Domnich, S.N. Dub, A. Kailer, K.G. Nickel, Cyclic Nanoindentation and Raman micro-spectroscopy study of phase transformations in semiconductors, J. Mater. Res. 15(2000) 871–879.

DOI: 10.1557/jmr.2000.0124

Google Scholar

[46] V. Domnich, Y. Gogotsi, S.N. Dub, Effect of phase transformations on the shape of unloading curve in the nanoindentation of silicon, Appl. Phys. Lett. 76 (2000) 2214–2216.

DOI: 10.1063/1.126300

Google Scholar

[47] O. Lysenko, A.G. Mamalis, V. Andruschenko, E. Mitskevich, Surface nanomachining using Scanning Tunneling Microsope with a diamond tip, Nanotechnology Perceptions 6(2010) 41–50.

DOI: 10.4024/n19ly09a.ntp.06.01

Google Scholar

[48] D. Tabor, The Hardness of Metals, Oxford, Clarendon Press, (2000).

Google Scholar

[49] T.A. Michalske, J.E. Houston, Dislocation nucleation at nanoscale mechanical contacts, Acta Mater. 46(1998) 391–396.

DOI: 10.1016/s1359-6454(97)00270-x

Google Scholar

[50] C. Tromas, Y. Gaillard, J. Woirgard, Nucleation of dislocations during nanoindentation in MgO, Phil. Mag. 86(2006) 5595–5606.

DOI: 10.1080/14786430600690499

Google Scholar

[51] T. Ohmura, L. Zhang, K. Sekido, K. Tsuzaki, Effects of lattice defects on indentation-induced plasticity initiation behavior in metals, J. Mater. Res. 27(2012) 1742–1749.

DOI: 10.1557/jmr.2012.161

Google Scholar

[52] S. N. Dub, V.V. Brazhkin, N.V. Novikov, G.N. Tolmacheva, P.M. Litvin, L.M. Lityagina, T.I. Dyuzheva, Comparative studies of mechanical properties of stishovite and sapphire single crystals by nanoindentation, J. Superhard Mater. 32(2010) 406–414.

DOI: 10.3103/s1063457610060067

Google Scholar

[53] S.N. Dub, G.P. Kislaya, P.I. Loboda, Study of mechanical properties of LaB6 single crystal by nanoindentation, J. Superhard Mater. 35(2013) 158–165.

DOI: 10.3103/s1063457613030052

Google Scholar

[54] S.N. Dub, P.I. Loboda, Yu.I. Bogomol, G.N. Tolmacheva, V.N. Tkach, Mechanical properties of HfB2 whiskers, J. Superhard Mater. 35(2013) 234–241.

DOI: 10.3103/s1063457613040059

Google Scholar

[55] K.L. Johnson, Contact Mechanics, Cambridge, UK, Cambridge University Press, (1987).

Google Scholar

[56] H.M. Pollock, Nanoindentation, In: Friction, Lubrication and Wear Technology, ASM Handbook 18, ASM International. Materials Park: OH, (1992) 419–429.

Google Scholar

[57] J. Mencik, M.V. Swain, Characterisation of materials using micro-indentation tests with pointed indenters, Mater. Forum 18(1994) 277–288.

Google Scholar

[58] G.M. Pharr, Measurement of mechanical properties by ultra-low load indentation, Mater. Sci. Eng. A253(1998) 151–159.

Google Scholar

[59] B. Wolf, Inference of mechanical properties from instrumented depth sensing indentation at tiny loads and indentation depths, Cryst. Res. Technol. 35(2000) 377–399.

DOI: 10.1002/1521-4079(200004)35:4<377::aid-crat377>3.0.co;2-q

Google Scholar

[60] J.L. Hay, G.M. Pharr, Instrumented Indentation Testing, In: H. Kuhn, D. Medlin (Eds. ) ASM Handbook: Mechanical Testing and Evaluation, 10th ed. ASM International: Materials Park, 8(2000) 232–243.

DOI: 10.31399/asm.hb.v08.a0003273

Google Scholar

[61] B. Bhushan, X. Li, Nanomechanical characterization of solid surfaces and thin films, Int. Mater. Rev. 48(2003) 125–164.

Google Scholar

[62] M.R. Van Landingham, Review of instrumented indentation, J. Res. Natl. Inst. Stand. Technol. 108(2003) 249–265.

Google Scholar

[63] J. Mackerle, Finite element and boundary element simulations of indentation problems: A bibliography (1997–2000), Finite Elem. Anal. Design. 37(2001) 811–819.

DOI: 10.1016/s0168-874x(01)00044-0

Google Scholar

[64] J. Mackerle, Engineering computations, Int. J. Comput. Aid. Eng. 21(2004) 23.

Google Scholar

[65] I.J. McColm, Ceramic Hardness, Plenum Press, New York, (1990).

Google Scholar

[66] A.C. Fischer-Cripps, Nanoindentation, Springer Verlag, New York, (2002).

Google Scholar

[67] M.M. Chaudhri, Y.Y. Lim (Eds. ) Second International Indentation Workshop, Cavendish Laboratory, University of Cambridge, Cambridge, UK, July 2001, Phil. Mag. 82(2002) 1807–1809.

DOI: 10.1080/01418610208235691

Google Scholar

[68] Focus topic: Nanoindentation. J. Mater. Res. 14(1999).

Google Scholar

[69] Y.T. Cheng, T. Page, G.M. Pharr, M. Swain, K.J. Wahl (Eds. ), Fundamentals and Applications of Instrumented Indentation in Multidisciplinary Research, J. Mater. Res. 19 (2004) 1–2.

Google Scholar

[70] J.H. Westbrook., H. Conrad (Eds. ) The Science of Hardness Testing and Its Research Applications. American Society for Metals, Metals Park, (1973).

Google Scholar

[71] S.P. Baker, R.F. Cook, S.G. Corcoran, N.R. Moody (Eds. ), Fundamentals of Nanoindentation and Nanotribology II, Mater. Res. Soc. Symp. Proc. 2001, 649.

Google Scholar

[72] A. Kumar, W.J. Meng, Y.T. Cheng, J.S. Zabinski, G.L. Doll, S. Veprek (Eds. ), Surface Engineering 2002: Synthesis, Characterization and Applications, Mater. Res. Soc. Symp. Proc. 2003; 750.

Google Scholar

[73] H. Butt, B. Capella, M. Kappl, Surf. Sci. Rep. 59(2005) 1.

Google Scholar

[74] S. Hengsberge, A. Kulik, European Cells and Materials 1(2001) 12.

Google Scholar

[75] D.C. Lin, E.K. Dimitriadis, F. Horkay, Robust strategies for automated AFM force curve analysis—II: Adhesion-influenced indentation of soft, elastic materials, ASME J. Biomech. Eng. 129(2007) 430–440.

DOI: 10.1115/1.2800826

Google Scholar

[76] D.B. Bogy, Surface modification and measurement using a Scanning Tunneling Microscope with a diamond tip, Journal of Tribology 114(1992) 493–498.

DOI: 10.1115/1.2920910

Google Scholar

[77] G.M. Matenoglou, L.E. Koutsokeras, Ch.E. Lekka, G. Abadias, C. Kosmidis, G.A. Evangelakis, P. Patsalas, Surf. Coat. Technol. 204(2009) 911–914.

DOI: 10.1016/j.surfcoat.2009.06.032

Google Scholar

[78] J. Hay, P. Agee, E. Herbert, Continuous stiffness measurement during instrumented indentation testing, Exp. Techniques 34(2010) 86–94.

DOI: 10.1111/j.1747-1567.2010.00618.x

Google Scholar

[79] T. F. Page, W. C. Oliver, C. J. McHargue, The deformation behavior of ceramic crystals subjected to very low load (nano) indentations, J. Mater. Res. 7(1992) 450–473.

DOI: 10.1557/jmr.1992.0450

Google Scholar

[80] C. Tromas, J. Colin, C. Coupeau, et al., Pop-in phenomenon during nanoindentation in MgO, Eur. Phys. J. Appl. Phys. 8(1999) 123–128.

DOI: 10.1051/epjap:1999237

Google Scholar

[81] D. Lorenz, A. Zeckzer, U. Hilpert, et al. Pop-in effect as homogeneous nucleation of dislocations during nanoindentation, Phys. Rev. B67(2003) 172101–172104.

DOI: 10.1103/physrevb.67.172101

Google Scholar

[82] E.T. Lilleoden, W.D. Nix, Microstructural length-scale effects in the nanoindentation behavior of thin gold films, Acta Mater. 54(2006) 1583-1593.

DOI: 10.1016/j.actamat.2005.11.025

Google Scholar

[83] C. Lu, Y.W. Mai, P. L. Tam, Y. G. Shen, Nanoindentation-induced elastic–plastic transition and size effect in a-Al2O3 (0001), Phil. Mag. Lett. 87(2007) 409–415.

DOI: 10.1080/09500830701203156

Google Scholar

[84] S.N. Dub, Y.Y. Lim, M.M. Chaudhri, Nanohardness of high purity Cu (111) single crystals: the effect of indenter load and prior plastic sample strain, J. Appl. Phys. 107(2010) 043510–043510(15).

DOI: 10.1063/1.3290970

Google Scholar

[85] D. Tabor Hardness of Metals. Oxford University Press, Oxford, (1951).

Google Scholar

[86] I. Spary, N.M. Jennett, A.J. Bushby, Indentation and Finite Element modelling investigations of the indentation size effect in aluminium coatings on borosilicate glass substrates, MRS Symp Proc. 795(2004) 455-461.

DOI: 10.1557/proc-795-u10.6

Google Scholar

[87] Y. Utsugi, Nanometre-scale chemical modification using a Scanning Tunnelling Microscope, Nature 347(1990) 747-749.

DOI: 10.1038/347747a0

Google Scholar

[88] A. Sato and Y. Tsukamoto, Nanometre-scale recording and erasing with the Scanning Tunnelling Microscope, Nature 363(1993) 431-432.

DOI: 10.1038/363431a0

Google Scholar

[89] R. Becker, A. Golovchenko, Swartzentruber, Atomic-scale surface modifications using a Tunneling Microscope, Nature 325(1987) 419-421.

DOI: 10.1038/325419a0

Google Scholar

[90] T. Jung, A. Moser, H. Hug, D. Brodbeck, R. Hofer, H. Hidber, and U. Schwarz, High-density data storage using proximal probe techniques, Ultramicrosc. 42(1992) 1446-1451.

DOI: 10.1016/0304-3991(92)90464-u

Google Scholar

[91] S. Hosaka, A. Kikukawa, H. Koyanagi et al., SPM-based data storage for ultrahigth density recording, Nanotechnology 8(1997) A58–A62.

DOI: 10.1088/0957-4484/8/3a/012

Google Scholar

[92] H. Kado, T. Tohda, Nanometer-scale recording on chalcogenide films with an Atomic Force Microscope, Appl. Phys. Lett. 66(1995) 2961-2962.

DOI: 10.1063/1.114243

Google Scholar

[93] J. Ruigrok, R. Coehoorn, S. Cumpson, H. Kesteren, Disk recording beyond 100 Gb/in2: hybrid recording?, J. Appl. Phys. 87(2000) 5398–5403.

DOI: 10.1063/1.373356

Google Scholar

[94] J. Nakamura, M, Miamoto, S. Hosaka, H. Koyanagi, High-density thermomagnetic recording method using a Scanning Tunneling Microscope, J. Appl. Phys. 77(1995) 779–781.

DOI: 10.1063/1.359000

Google Scholar

[95] L. Zhang, J. Bain, J. Zhu, L. Abelmann, T. Onoue, Characterization of heat-assisted magnetic probe recording on CoNi/Pt multilayers, J. Mag. Magn. Mater. 305(2006) 16–23.

DOI: 10.1016/j.jmmm.2005.11.022

Google Scholar

[96] O. Lysenko, N. Novikov, V. Grushko et al., High-density data storage using diamond probe technique, Journal of Physics: Conference Series 100(2008) 052032.

DOI: 10.1088/1742-6596/100/5/052032

Google Scholar

[97] I. Yaminsky, A. Tishin, Magnetic force microscopy of the surface, Uspekhi Khimii 68(1999) 187–193 (in Russian).

Google Scholar

[98] N. Novikov (Ed), Physical Properties of Diamonds (Handbook), Naukova Dumka Publ, Kyiv, 1987 (in Russian).

Google Scholar

[99] E. Drolle, F. Hane, B. Lee, Z. Leonenko, Atomic force microscopy to study molecular mechanisms of amyloid fibril formation and toxicity in Alzheimer's disease, Drug Metab. Rev. 46(2014) 207–223.

DOI: 10.3109/03602532.2014.882354

Google Scholar

[100] C. Nebel, D. Shin, B. Rezek, N, Tokuda, H. Uetsuka, H. Watanabe, Diamond and biology J. R. Soc. Interface 4(2007) 439–461.

DOI: 10.1098/rsif.2006.0196

Google Scholar

[101] L. Cagnon, T. Devolder, R. Cortes, A. Morrone, J. E. Schmidt, C. Chappert, P. Allongue, Physical Review B 63(2001) 104419.

DOI: 10.1103/physrevb.63.104419

Google Scholar

[102] J. Halbritter, G. Repphun, S. Vinzelberg, G. Staikov, W.J. Lorenz, Electrochim. Acta. 40(1995) 1385–1394.

DOI: 10.1016/0013-4686(95)00038-g

Google Scholar

[103] H. Siegenthaler, Scanning tunneling microscopy in electrochemistry, In: R. Wiesendanger and H. J. Guenterodt (Eds. ) (1992) 7–49.

Google Scholar