CoTiO3 Nanoparticles as a Highly Active Heterogeneous Catalyst of Peroxymonosulfate for the Degradation of Organic Pollutants under Visible-Light Illumination

Article Preview

Abstract:

Visible light responsive CoTiO3 nanoparticles with average diameter of 100 nm were successfully synthesized by sol-gel method and were firstly applied to catalytic activation of peroxymonosulfate (PMS) for degradation of organic pollutants (Rhodamine B (RhB)). Photocatalytic experiments illustrated that CoTiO3 nanoparticles reveal good photocatalytic activity and excellent ability to activate PMS, the synergistic effect of visible light photocatalysis and sulfate radical generated from activated PMS can degradate RhB efficiently. Besides, CoTiO3 nanoparticles maintain their high photocatalytic and activation efficiency after three times recycling.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-79

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zbiljic, O. Vajdle, V. Guzsvany, J. Molnar, J. Agbaba, B. Dalmacija, K. Kalcher, J Hazard Mater, 283 (2015) 292-301.

Google Scholar

[2] C. Cai, Z. Zhang, J. Liu, N. Shan, H. Zhang, D.D. Dionysiou, Applied Catalysis B-Environmental, 182 (2016) 456-468.

Google Scholar

[3] J. Deng, Y.S. Shao, N.Y. Gao, C.Q. Tan, S.Q. Zhou, X.H. Hu, J Hazard Mater, 262 (2013) 836-844.

Google Scholar

[4] G. -D. Fang, D.D. Dionysiou, Y. Wang, S.R. Al-Abed, D. -M. Zhou, J Hazard Mater, 227 (2012) 394-401.

Google Scholar

[5] Z.H. Wang, R.X. Yuan, Y.G. Guo, L. Xu, J.S. Liu, J Hazard Mater, 190 (2011) 1083-1087.

Google Scholar

[6] Y.Q. Pi, J.L. Feng, J.Y. Sun, M.K. Song, J.H. Sun, Environ Sci Pollut R, 21 (2014) 3031-3040.

Google Scholar

[7] A. Rodríguez, G. Ovejero, J. Sotelo, M. Mestanza, J. García, Ind Eng Chem Res, 49 (2009) 498-505.

DOI: 10.1021/ie901212m

Google Scholar

[8] P.R. Shukla, S. Wang, H. Sun, H.M. Ang, M. Tadé, Applied Catalysis B: Environmental, 100 (2010) 529-534.

Google Scholar

[9] F. Qi, W. Chu, B.B. Xu, Chem Eng J, 235 (2014) 10-18.

Google Scholar

[10] C. Cai, H. Zhang, X. Zhong, L.W. Hou, J Hazard Mater, 283 (2015) 70-79.

Google Scholar

[11] Q. Chen, F. Ji, Q. Guo, J. Fan, X. Xu, J Environ Sci-China, 26 (2014) 2440-2450.

Google Scholar

[12] S.N. Su, W.L. Guo, Y.Q. Leng, C.L. Yi, Z.M. Ma, J Hazard Mater, 244 (2013) 736-742.

Google Scholar

[13] L.J. Xu, W. Chu, L. Gan, Chem Eng J, 263 (2015) 435-443.

Google Scholar

[14] I.V.B. a.G.E.M. Andreas Öchsner, J Nano Res-Sw, 16 (2008) 123-128.

Google Scholar

[15] Y. Qu, W. Zhou, H. Fu, Chemcatchem, 6 (2014) 265-270.

Google Scholar

[16] A.V. Vinogradov, V.V. Vinogradov, T.V. Gerasimova, A.V. Agafonov, J Alloy Compd, 543 (2012) 172-175.

Google Scholar

[17] J. Lu, Y. Jiang, Y. Zhang, J. Huang, Z. Xu, Ceram Int, 41 (2015) 3714-3721.

Google Scholar

[18] S. Rasalingam, R.T. Koodali, CrystEngComm, (2016).

Google Scholar

[19] S. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Laassiri, H. Alamdari, Chemical Reviews, 114 (2014) 10292-10368.

DOI: 10.1021/cr500032a

Google Scholar

[20] S.N. Tijare, M.V. Joshi, P.S. Padole, P.A. Mangrulkar, S.S. Rayalu, N.K. Labhsetwar, Int J Hydrogen Energ, 37 (2012) 10451-10456.

DOI: 10.1016/j.ijhydene.2012.01.120

Google Scholar

[21] J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, J. Li, Acs Catalysis, 4 (2014) 2917-2940.

Google Scholar

[22] Y. Qu, W. Zhou, H. Fu, ChemCatChem, 6 (2014) 265-270.

Google Scholar

[23] K. Wangkawong, S. Suntalelat, D. Tantraviwat, B. Inceesungvorn, Materials Letters, 133 (2014) 119-122.

DOI: 10.1016/j.matlet.2014.06.158

Google Scholar

[24] Z. Zhu, H. Yu, J. Li, J Nano Res-Sw, 17 (2012) 1-12.

Google Scholar