Phosphorus-Doped p-Type ZnS Nanowires and their Photodetecting Applications Based on Device Construction

Article Preview

Abstract:

Phosphorus-doped p-type ZnS NWs were synthesized by chemical deposition method. The as-synthesized NWs shows obvious p-type conduction with a hole concentration of 8.35 × 1017 cm-3. ZnS-Si core-shell nanoheterojunction was fabricated by depositing Si thin film on the surface of ZnS NWs through a sputtering method. The core-shell nanostructure exhibited excellent photoresponse to white light and UV light. Under UV light illumination, a high performance with a responsibility of ~ 0.14 × 103 AW-1, a gain of ~ 0.69 × 103 and a detectivity of ~ 1.2 × 1010 cmHz1/2W-1 were obtained based on the ZnS-Si core-shell nanoheterojunction. This new nanostructure is expected to play an important role in the next-generation optoelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-72

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Andrew, Smith. S. M. Nie, Accounts. Chem. Res. 43 (2010) 190-200.

Google Scholar

[2] M. Law, J. Goldberger, P. D. Yang, Annu. Rev. Mater. Res. 34 (2004) 83-122.

Google Scholar

[3] X. W. Zhang, J. S. Jie, Z. Wang, C. Y. Wu, L. Wang, Q. Peng, Y. Q. Yu, P. Jiang and C. Xie, J. Mater. Chem. 21 (2011) 6020.

Google Scholar

[4] J. S. Jie, W. J. Zhang, I. Bello, C. S. Lee and S. T. Lee, Nano Today (5) 2010 313.

Google Scholar

[5] Y. Huang, X. Duan and C. M. Lieber, Small 1 (2005) 142–147.

Google Scholar

[6] C. Liu, L. Dai, Y. Ye, T. Sun, R. G. Peng, X. Wen, P. Wu and G. Qin, J. Mater. Chem. 20 (2010) 5011–5015.

Google Scholar

[7] T. Zhai, L. Li, Y. Ma, M. Liao, X. Wang, X. Fang, J. Yao, Y. Bando and D. Golberg, Chem. Soc. Rev. 40 (2011) 2986–3004.

DOI: 10.1039/c0cs00126k

Google Scholar

[8] X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wu, Y. Bando and D. Golberg, Prog. Mater. Sci. 56 (2011) 175–287.

Google Scholar

[9] Y. Tang, Z. Chen, H. Song, C. Lee, H. Cong, H. Cheng, W. Zhang, I. Bello and S. Lee, Nano Lett. 8 (2008) 4191–4195.

Google Scholar

[10] Y. Cui, Z. Zhong, D. Wang, W. U. Wang and C. M. Lieber, Nano Lett. 3 (2003) 149–152.

Google Scholar

[11] M. S. Fuhrer, B. M. Kim, T. Durkop and T. Brintlinger, Nano Lett. 2 (2002) 755–759.

Google Scholar

[12] P. Jiang, J. S. Jie, Y. Q. Yu, Z. Wang, C. Xie, X. W. Zhang, C. Y. Wu, L. Wang, Z. F. Zhu and L. B. Luo, J. Mater. Chem. 22 (2012) 6856.

Google Scholar

[13] X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen and G. Z. Shen, J. Mater. Chem. 22 (2012) 6845.

Google Scholar

[14] X. S. Fang, Y. Bando, G. Z. Shen, C. H. Ye, U. K. Gautam, P. M. F. J. Costa, C. Y. Zhi, C.C. Tang and D. Golberg, Adv. Mater. 19 (2007) 2593.

DOI: 10.1002/adma.200700078

Google Scholar

[15] Y. Q. Yu, Y. Jiang, Peng Jiang, Y. G. Zhang, D. Wu, Z. Zhu, Q. Liang, S. Chen, Y. Zhang and J. S. Jie, J. Mater. Chem. C 1 (2013) 1238.

Google Scholar

[16] J.Y. Tang, Z.Y. Huo, S. Brittman, H.W. Gao and P.D. Yang, Nature nanotechnology 6 (2011) 568.

Google Scholar

[17] B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C.M. Lieber, Nature 449 (2007) 885.

Google Scholar

[18] H. D. Cho, A. S. Zakirov, S. U. Yuldashev, C. W. Ahn, Y. K. Yeo and T. W. Kang, Nanotechnology 23 (2012) 115401.

Google Scholar

[19] X. Zhang, J. Jie, Z. Wang, C. Wu, L. Wang, Q. Peng, Y. Yu, P. Jiang and C. Xie, J. Mater. Chem. 21 (2011) 6736-6741.

Google Scholar

[20] Y. H. Leung, Z. B. He, L. B. Luo, C. H. A. Tsang, N. B. Wong, W. J. Zhang, and S. T. Lee Appl. Phys. Lett. 96 (2010) 053102.

Google Scholar

[21] J. J. Wang, F. F. Cao, L. Jiang, Y. G. Guo, W. P. Hu, L. J. Wan, J. Am. Chem. Soc. 13 (2009) 15602.

Google Scholar

[22] X.S. Fang, L.F. Hu, K.F. Huo, B. Gao, L. Zhao, M. Liao, P. K. Chu, Y. Bando and D. Golberg, Adv. Funct. Mater. 21 (2011) 3907–3915.

DOI: 10.1002/adfm.201100743

Google Scholar