Charge Trap Mechanism in Hybrid Nanostructured (YMnO3) Metal-Oxide-Semiconductor (MOS) Devices

Article Preview

Abstract:

Hybrid nanostructured Metal Oxide Semiconductor (MOS) capacitor was fabricated on silicon substrates (n-type) using chemical solution deposition with YMnO3 as an oxide layer. Electrical properties of MOS capacitor have been investigated with frequency dependence capacitance-voltage (C-V) characterization. The surface morphology of deposited layer was studied using the Atomic Force Microscopy (AFM). Hysteresis in the C-V loop and change in the values of Cminimum were described by a charge trap mechanism in the multiferroic oxide layer of MOS devices. While anomalous behavior in saturation capacitance in the inversion as well as in accumulation region and a shift in threshold voltage (VT) were explained in the vicinity of frequency depended Debye length (LDebye).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

92-99

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Benedicto, B. Galiana, J. M. Molina-Aldareguia, S. Monaghan, P. K. Hurley, K. Cherkaoui, L. Vazquez, and P. Tejedor, Fabrication of HfO2 patterns by laser interference nanolithography and selective dry etching for III-V CMOS application, Nanoscale Res. Lett. 6 (2011).

DOI: 10.1186/1556-276x-6-400

Google Scholar

[2] J. P. de Souza, E. Kiewra, Y. Sun, A. Callegari, D. K. Sadana, G. Shahidi, D. J. Webb, J. Fompeyrine, R. Germann, C. Rossel, and C. Marchiori, Inversion mode n-channel GaAs field effect transistor with high-k/metal gate, Appl. Phys. Lett. 92 (2008).

DOI: 10.1063/1.2912027

Google Scholar

[3] P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, S. N. G. Chu, S. Nakahara, H. -J. L. Gossmann, J. P. Mannaerts, M. Hong, K. K. Ng, and J. Bude, GaAs metal-oxide-semiconductor field-effect transistor with nanometer-thin dielectric grown by atomic layer deposition, Appl. Phys. Lett. 83 (2003).

DOI: 10.1063/1.1590743

Google Scholar

[4] S. J. Bentley, M. Holland, X. Li, G. W. Paterson, H. Zhou, O. Ignatova, D. Macintyre, S. Thoms, A. Asenov, B. Shin, J. Ahn, P. C. McIntyre, and I. G. Thayne, Electron mobility in surface- and buried-channel flatband In0. 53Ga0. 47As MOSFETs with ALD Al2O3 gate dielectric , IEEE Electron Device Lett. 32 (2011).

DOI: 10.1109/led.2011.2107876

Google Scholar

[5] G. K. Dalapati, Electrical and interfacial characterization of atomic layer deposited high-kappa gate dielectrics on GaAs for advanced CMOS devices, IEEE Trans. Electron Devices 54 (2007) 1831-1837.

DOI: 10.1109/ted.2007.901261

Google Scholar

[6] G. K. Dalapati, T. K. Shun Wong, Y. Li, C. K. Chia, A. Das, C. Mahata, H. Gao, S. Chattopadhyay, M. K. Kumar, H. L. Seng, C. K. Maiti, and D. Z. Chi, Characterization of epitaxial GaAs MOS capacitors using atomic-layer-deposited TiO2/Al2O3 gate stack: study of Ge auto-doping and p-type Zn doping, Nanoscale Res. Lett. 7 (2012).

DOI: 10.1186/1556-276x-7-99

Google Scholar

[7] L. Shi and Z. Liu, Characterization upon electrical hysteresis and thermal diffusion of TiAl3Ox dielectric film, Nanoscale Res. Lett. 6 (2011) 557.

DOI: 10.1186/1556-276x-6-557

Google Scholar

[8] D. Shahrjerdi, D. I. Garcia-Gutierrez, E. Tutuc, and S. K. Banerjee, Chemical and physical interface studies of the atomic-layer-deposited Al 2 O 3 on GaAs substrates, Appl. Phys. Lett. 92 (2008) 223501.

DOI: 10.1063/1.2937404

Google Scholar

[9] H. D. Lee, T. Feng, L. Yu, D. Mastrogiovanni, A. Wan, T. Gustafsson, and E. Garfunkel, Reduction of native oxides on GaAs during atomic layer growth of Al 2O3, Appl. Phys. Lett. 94 (2009) 222108.

DOI: 10.1063/1.3148723

Google Scholar

[10] T. Ytterdal, S. -H. Kim, K. Lee, and T. A. Fjeldly, IEEE Trans. Electron Devices 42 (1995) 362-364.

Google Scholar

[11] S. Parashar, A. R. Raju, C. N. R. Rao, P. Victor, and S. B. Krupanidhi, Electrical properties of ferroelectric YMnO3 films deposited on n-type Si (111) substrates, J. Phys. D. Appl. Phys. 36 (2003) 2134.

DOI: 10.1088/0022-3727/36/17/317

Google Scholar

[12] G. K. Dalapati, A. Sridhara, A. See, W. Wong, C. K. Chia, S. J. Lee, and D. Chi, Characterization of sputtered TiO2 gate dielectric on aluminum oxynitride, passivated p-GaAs, J Appl Phys. 103 (2008) 034508.

DOI: 10.1063/1.2840132

Google Scholar

[13] M.K. Lee, C.F. Yen, J.J. Huang. Electrical characteristics of liquid-phase-deposited TiO2 films on GaAs substrate with (NH4)2Sx treatment. J Electrochem Soc. 153 (2006) 77.

Google Scholar

[14] J. J. Lee, M.K. Yen, C.F. Huang, Electrical characteristics of liquid-phase-deposited TiO2 films on GaAs substrate with (NH4)2Sx treatment, J Electrochem Soc. 153 (2006).

Google Scholar

[15] P. T. Chen, Y. Sun, E. Kim, P. C. McIntyre, W. Tsai, M. Garner, P. Pianetta, Y. Nishi, and C. O. Chui, HfO2 gate dielectric on (NH4)2S passivated (100) GaAs grown by ALD, J. Appl. Phys. 103 (2008) 034106.

DOI: 10.1063/1.2838471

Google Scholar

[16] N. A. Shah, Induced tuning of dielectric behavior in nanostructured Y0. 95Ca0. 05MnO3 compounds, Appl Nanosci. 4 (2014) 889-895.

DOI: 10.1007/s13204-013-0272-3

Google Scholar

[17] D. Dhurv, J. H. Markna, P. S. Solanki, and N. A. Shah, Voltage-controlled TCR (Temperature Sensitivity) in Nanostructured Y0. 95Ca0. 05MnO3/Si, p-n Junction Diode, Journal of NanoScience, NanoEngineering & Applications, 4 (2016) 29–32.

Google Scholar

[18] J. H. Markna, P. S. Vachhani, N. A. Shah, J. John, D. S. Rana, S. K. Malik, and D. G. Kuberkar, Size-dependent modifications in the physical properties of chemical solution deposition and pulsed laser deposition grown La0. 7Ca0. 3MnO3 manganite thin films: A comparative study, Indian J. Eng. Mater. Sci. 16 (2009).

Google Scholar

[19] R. N. Parmar, J. H. Markna, D. G. Kuberkar, R. Kumar, D. S. Rana, V. C. Bagve, and S. K. Malik, Swift-heavy-ion-irradiation-induced enhancement in electrical conductivity of chemical solution deposited La0. 7Ba0. 3MnO3 thin films, Appl. Phys. Lett. 14 (2006).

DOI: 10.1063/1.2359291

Google Scholar

[20] Z. B. Van., Principal of Semicobnductor Devices, (Department of ECE, University of Colorado, 2007).

Google Scholar

[21] M. Passlack, M. Hong, J. P. Mannaerts, R. L. Opila, S. N. G. Chu, N. Moriya, F. Ren, and J. R. Kwo, Low Dit, thermodynamically stable Ga2O3 -GaAs interfaces: fabrication, characterization, and modeling, IEEE Transctions Electron Devices 44 (1997).

DOI: 10.1109/16.557709

Google Scholar

[22] R. Thomas, J. F. Scott, D. N. Bose, and R. S. Katiyar, Multiferroic thin-film integration onto semiconductor devices, Journal of Physics, J. Phys. Condens. Matter 22 (2010) 423201.

DOI: 10.1088/0953-8984/22/42/423201

Google Scholar

[23] Kinnari Thakrar, Davit Dhruv, K. N. Rathod, Zalak Joshi, Keval Gadani, D. D. Pandya, J. H. Markna, B. R. Kataria, P. S. Solanki, D. G. Kuberkar, N. A. Shah, Size-controlled electrical properties of sol–gel-grown nanostructured Gd0. 95Ca0. 05MnO3. J. Sol-Gel sci. technol, (2016).

DOI: 10.1007/s10971-016-4031-2

Google Scholar

[24] Davit Dhruv, Zalak Joshi, Sanjay Kansara, D D Pandya, J H Markna, K Asokan, P S Solanki, D G Kuberkar and N A Shah, Temperature-dependent I–V and C–V characteristics of chemically grown Y0. 95Ca0. 05MnO3/Si thin films, Mater. Res. Express, 3 (2016).

DOI: 10.1088/2053-1591/3/3/036402

Google Scholar