[1]
M. Benedicto, B. Galiana, J. M. Molina-Aldareguia, S. Monaghan, P. K. Hurley, K. Cherkaoui, L. Vazquez, and P. Tejedor, Fabrication of HfO2 patterns by laser interference nanolithography and selective dry etching for III-V CMOS application, Nanoscale Res. Lett. 6 (2011).
DOI: 10.1186/1556-276x-6-400
Google Scholar
[2]
J. P. de Souza, E. Kiewra, Y. Sun, A. Callegari, D. K. Sadana, G. Shahidi, D. J. Webb, J. Fompeyrine, R. Germann, C. Rossel, and C. Marchiori, Inversion mode n-channel GaAs field effect transistor with high-k/metal gate, Appl. Phys. Lett. 92 (2008).
DOI: 10.1063/1.2912027
Google Scholar
[3]
P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, S. N. G. Chu, S. Nakahara, H. -J. L. Gossmann, J. P. Mannaerts, M. Hong, K. K. Ng, and J. Bude, GaAs metal-oxide-semiconductor field-effect transistor with nanometer-thin dielectric grown by atomic layer deposition, Appl. Phys. Lett. 83 (2003).
DOI: 10.1063/1.1590743
Google Scholar
[4]
S. J. Bentley, M. Holland, X. Li, G. W. Paterson, H. Zhou, O. Ignatova, D. Macintyre, S. Thoms, A. Asenov, B. Shin, J. Ahn, P. C. McIntyre, and I. G. Thayne, Electron mobility in surface- and buried-channel flatband In0. 53Ga0. 47As MOSFETs with ALD Al2O3 gate dielectric , IEEE Electron Device Lett. 32 (2011).
DOI: 10.1109/led.2011.2107876
Google Scholar
[5]
G. K. Dalapati, Electrical and interfacial characterization of atomic layer deposited high-kappa gate dielectrics on GaAs for advanced CMOS devices, IEEE Trans. Electron Devices 54 (2007) 1831-1837.
DOI: 10.1109/ted.2007.901261
Google Scholar
[6]
G. K. Dalapati, T. K. Shun Wong, Y. Li, C. K. Chia, A. Das, C. Mahata, H. Gao, S. Chattopadhyay, M. K. Kumar, H. L. Seng, C. K. Maiti, and D. Z. Chi, Characterization of epitaxial GaAs MOS capacitors using atomic-layer-deposited TiO2/Al2O3 gate stack: study of Ge auto-doping and p-type Zn doping, Nanoscale Res. Lett. 7 (2012).
DOI: 10.1186/1556-276x-7-99
Google Scholar
[7]
L. Shi and Z. Liu, Characterization upon electrical hysteresis and thermal diffusion of TiAl3Ox dielectric film, Nanoscale Res. Lett. 6 (2011) 557.
DOI: 10.1186/1556-276x-6-557
Google Scholar
[8]
D. Shahrjerdi, D. I. Garcia-Gutierrez, E. Tutuc, and S. K. Banerjee, Chemical and physical interface studies of the atomic-layer-deposited Al 2 O 3 on GaAs substrates, Appl. Phys. Lett. 92 (2008) 223501.
DOI: 10.1063/1.2937404
Google Scholar
[9]
H. D. Lee, T. Feng, L. Yu, D. Mastrogiovanni, A. Wan, T. Gustafsson, and E. Garfunkel, Reduction of native oxides on GaAs during atomic layer growth of Al 2O3, Appl. Phys. Lett. 94 (2009) 222108.
DOI: 10.1063/1.3148723
Google Scholar
[10]
T. Ytterdal, S. -H. Kim, K. Lee, and T. A. Fjeldly, IEEE Trans. Electron Devices 42 (1995) 362-364.
Google Scholar
[11]
S. Parashar, A. R. Raju, C. N. R. Rao, P. Victor, and S. B. Krupanidhi, Electrical properties of ferroelectric YMnO3 films deposited on n-type Si (111) substrates, J. Phys. D. Appl. Phys. 36 (2003) 2134.
DOI: 10.1088/0022-3727/36/17/317
Google Scholar
[12]
G. K. Dalapati, A. Sridhara, A. See, W. Wong, C. K. Chia, S. J. Lee, and D. Chi, Characterization of sputtered TiO2 gate dielectric on aluminum oxynitride, passivated p-GaAs, J Appl Phys. 103 (2008) 034508.
DOI: 10.1063/1.2840132
Google Scholar
[13]
M.K. Lee, C.F. Yen, J.J. Huang. Electrical characteristics of liquid-phase-deposited TiO2 films on GaAs substrate with (NH4)2Sx treatment. J Electrochem Soc. 153 (2006) 77.
Google Scholar
[14]
J. J. Lee, M.K. Yen, C.F. Huang, Electrical characteristics of liquid-phase-deposited TiO2 films on GaAs substrate with (NH4)2Sx treatment, J Electrochem Soc. 153 (2006).
Google Scholar
[15]
P. T. Chen, Y. Sun, E. Kim, P. C. McIntyre, W. Tsai, M. Garner, P. Pianetta, Y. Nishi, and C. O. Chui, HfO2 gate dielectric on (NH4)2S passivated (100) GaAs grown by ALD, J. Appl. Phys. 103 (2008) 034106.
DOI: 10.1063/1.2838471
Google Scholar
[16]
N. A. Shah, Induced tuning of dielectric behavior in nanostructured Y0. 95Ca0. 05MnO3 compounds, Appl Nanosci. 4 (2014) 889-895.
DOI: 10.1007/s13204-013-0272-3
Google Scholar
[17]
D. Dhurv, J. H. Markna, P. S. Solanki, and N. A. Shah, Voltage-controlled TCR (Temperature Sensitivity) in Nanostructured Y0. 95Ca0. 05MnO3/Si, p-n Junction Diode, Journal of NanoScience, NanoEngineering & Applications, 4 (2016) 29–32.
Google Scholar
[18]
J. H. Markna, P. S. Vachhani, N. A. Shah, J. John, D. S. Rana, S. K. Malik, and D. G. Kuberkar, Size-dependent modifications in the physical properties of chemical solution deposition and pulsed laser deposition grown La0. 7Ca0. 3MnO3 manganite thin films: A comparative study, Indian J. Eng. Mater. Sci. 16 (2009).
Google Scholar
[19]
R. N. Parmar, J. H. Markna, D. G. Kuberkar, R. Kumar, D. S. Rana, V. C. Bagve, and S. K. Malik, Swift-heavy-ion-irradiation-induced enhancement in electrical conductivity of chemical solution deposited La0. 7Ba0. 3MnO3 thin films, Appl. Phys. Lett. 14 (2006).
DOI: 10.1063/1.2359291
Google Scholar
[20]
Z. B. Van., Principal of Semicobnductor Devices, (Department of ECE, University of Colorado, 2007).
Google Scholar
[21]
M. Passlack, M. Hong, J. P. Mannaerts, R. L. Opila, S. N. G. Chu, N. Moriya, F. Ren, and J. R. Kwo, Low Dit, thermodynamically stable Ga2O3 -GaAs interfaces: fabrication, characterization, and modeling, IEEE Transctions Electron Devices 44 (1997).
DOI: 10.1109/16.557709
Google Scholar
[22]
R. Thomas, J. F. Scott, D. N. Bose, and R. S. Katiyar, Multiferroic thin-film integration onto semiconductor devices, Journal of Physics, J. Phys. Condens. Matter 22 (2010) 423201.
DOI: 10.1088/0953-8984/22/42/423201
Google Scholar
[23]
Kinnari Thakrar, Davit Dhruv, K. N. Rathod, Zalak Joshi, Keval Gadani, D. D. Pandya, J. H. Markna, B. R. Kataria, P. S. Solanki, D. G. Kuberkar, N. A. Shah, Size-controlled electrical properties of sol–gel-grown nanostructured Gd0. 95Ca0. 05MnO3. J. Sol-Gel sci. technol, (2016).
DOI: 10.1007/s10971-016-4031-2
Google Scholar
[24]
Davit Dhruv, Zalak Joshi, Sanjay Kansara, D D Pandya, J H Markna, K Asokan, P S Solanki, D G Kuberkar and N A Shah, Temperature-dependent I–V and C–V characteristics of chemically grown Y0. 95Ca0. 05MnO3/Si thin films, Mater. Res. Express, 3 (2016).
DOI: 10.1088/2053-1591/3/3/036402
Google Scholar